Computer Organization and Levels of Abstraction

Announcements

- Today:
- PS 7
- Lab 8: Sound Lab tonight - bring machines and headphones!
- PA 7
- Tomorrow: Lab 9
- Friday: PS8

Today

- (Short) Floating point review
- Boolean logic
- Combinational Circuits
- Levels of Abstraction

Floating point

$\overline{+/-}$	Exponent	Mantissa
1 bit	8 bits	23 bits

- Sign is a 0 or 1
- Exponent is an binary integer
- Mantissa is a binary fraction

Floating point

$1.0011101 \times 201001011$

$\overline{+/-}$	Exponent
1 bit	Mantissa 23 bits
23 bits	

- Sign is a 0 or 1
- Exponent is an binary integer
- Mantissa is a binary fraction

Floating point Sign

$1.0011101 \times 201001011$

$\begin{array}{ll} \\ 0_{-} & \\ +/- \\ 1 \text { bit } & \text { Exponent } \\ 8 \text { bits } & \text { Mantissa } \\ 23 \text { bits }\end{array}$
\square Sign is a 0 or 1

Exponent

$1.0011101 \times 201001011$

- Exponent 01001011

ㅁls an unsigned integer
-But exponent can be negative - how to distinguish?
미EEE-754 specifies a bias: 127
-aThis gives us a range of -126 to +127
-Makes comparison easier (for large and small values)

Floating point Mantissa

$1.0011101 \times 201001011$

| $\underline{0}$ | $\underline{11001010}$ | $\underline{0011101}$ |
| :--- | :--- | :--- | :--- |
| $+/-$ | Exponent
 1 bit bits
 8 bits | Mantissa
 23 bits |

- Pad the mantissa

Floating point Mantissa

$1.0011101 \times 201001011$

| $\underline{0}$ | $\underline{11001010}$ | $\underline{00111010000000000000000}$ |
| :--- | :--- | :--- | :--- |
| $+/-$ | Exponent
 1 bit
 8 bits | Mantissa
 23 bits |

- Pad the mantissa

Floating point Mantissa

$1.0011101 \times 2^{01001011}$

01100101000111010000000000000000

You should be able to

- Identify basic gates
\square Describe the behavior of a gate or circuit using Boolean expressions, truth tables, and logic diagrams
- Transform one Boolean expression into another given the laws of Boolean algebra

Conceptualizing bits and circuits

\square ON or 1: true

O OFF or 0: false

- circuit behavior: expressed in Boolean logic or Boolean algebra

Boolean Logic (Algebra)

- Computer circuitry works based on Boolean Logic (Boolean Algebra) : operations on True (1) and False (0) values.

A	B	$A \wedge B$ (A AND B) (conjunction)	$A \vee B$ $(A$ OR B) (disjunction)
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

- A and B in the table are Boolean variables, AND and $O R$ are operations (also called functions).

Boolean Logic \& Truth Tables

E Example: You can think of $A \wedge B$ below as 15110 is fun and 15110 is useful where A stands for the statement 15110 is fun, B stands for the statement 15110 is useful.

A	B	A A B (A AND B) (conjunction)	$\mathrm{A} \vee \mathrm{B}$ (A OR B) (disjunction)
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Logic Gates

\square A gate is a physical device that implements a Boolean operator by performing basic operations on electrical signals.
\square Nowadays, gates are built from transistors.

${ }_{B}^{A}-D-{ }_{\text {"OR" }}^{A \vee B}$

Combinational Circuits

The logic states of inputs at any given time determine the state of the outputs.

What is Q ? $\quad(A \wedge B) \vee((B \vee C) \wedge(C \wedge B))$

Truth Table of a Circuit

How do I know that there should be 8 rows in the truth table?
http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

A	B	C	Q
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

Truth Table of a Circuit

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Describes the relationship between inputs and outputs of a device

Describing Behavior of Circuits

- Boolean expressions
- Circuit diagrams
- Truth tables

Equivalent notations

Why manipulate circuits?

\square The design process
■simplify a complex design for easier manufacturing, faster or cooler operation, ...
\square Boolean algebra helps us find another design guaranteed to have same behavior

Logical Equivalence

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$Q=B \wedge(A \vee C)$
This smaller circuit is logically equivalent to the one above: they have the same truth table. By using laws of Boolean Algebra we convert a circuit to another equivalent circuit.

Laws for the Logical Operators \wedge and \vee

 (Similar to \times and +)\square Commutative: $\quad A \wedge B=B \wedge A \quad A \vee B=B \vee A$

- Associative:

$$
\begin{aligned}
& A \wedge B \wedge C=(A \wedge B) \wedge C=A \wedge(B \wedge C) \\
& A \vee B \vee C=(A \vee B) \vee C=A \vee(B \vee C)
\end{aligned}
$$

- Distributive:

$$
\begin{aligned}
& A \wedge(B \vee B)=(A \wedge B) \vee(A \wedge C) \\
& A \vee(B \wedge C)=(A \vee B) \wedge(A \vee C)
\end{aligned}
$$

- Identity:

$$
A \wedge 1=A
$$

$$
A \vee 0=A
$$

- Dominance:

$$
A \wedge 0=0
$$

$$
A \vee 1=1
$$

- Idempotence:

$$
A \wedge A=A
$$

$$
A \vee A=A
$$

- Complementation: $\mathrm{A} \wedge \neg \mathrm{A}=0$ $A \vee \neg A=1$
- Double Negation: $\neg \neg \mathrm{A}=\mathrm{A}$

Laws for the Logical Operators \wedge and \vee (Similar to \times and +)

- Commutative:

$$
A \wedge B=B \wedge A \quad A \vee B=B \vee A
$$

- Associative:

$$
\begin{aligned}
& A \wedge B \wedge C=(A \wedge B) \wedge C=A \wedge(B \wedge C) \\
& A \vee B \vee C=(A \vee B) \vee C=A \vee(B \vee C)
\end{aligned}
$$

- Distributive:

$$
\begin{aligned}
& A \wedge(B \vee C)=(A \wedge B) \vee(A \wedge C) \\
& A \vee(B \wedge C)=(A \vee B) \wedge(A \vee C)
\end{aligned}
$$

- Identity:
$\mathrm{A} \wedge 1=\mathrm{A}$ $A \vee 0=A$

The A's and B's here are schematic variables! You can instantiate them with any expression that has a Boolean value:

$$
(\underbrace{x \vee y}_{A} \wedge) \wedge z=z \wedge(\underbrace{x \vee y)} \text { (by commutativity) }
$$

Applying Properties for \wedge and \vee

Showing $(x \wedge y) \vee((y \vee z) \wedge(z \wedge y))=y \wedge(x$ or $z)$

Commutativity $A \wedge B=B \wedge A$

$$
(x \wedge y) \vee((z \wedge y) \wedge(y \vee z))
$$

Distributivity $A \wedge(B \vee C)=(A \wedge B) \vee(A \wedge C)$

$$
(x \wedge y) \vee(z \wedge y \wedge y) \vee(z \wedge y \wedge z)
$$

Associativity, Commutativity, Idempotence

$$
(x \wedge y) \vee((z \wedge y) \vee(y \wedge z))
$$

Commutativity, idempotence $A \wedge A=A$

$$
((y) \wedge) \vee(\square \wedge z)
$$

Distributivity (backwards) (A) $\wedge B) \vee(A) \wedge C)=(A) \wedge(B \vee C)$

$$
\text { (v) } \wedge(x \vee z)
$$

Conclusion:

$$
(x \wedge y) \vee((y \vee z) \wedge(z \wedge y))=y \wedge(x \vee z)
$$

Extending the system

more gates and DeMorgan's laws

More gates (NAND, NOR, XOR)

A	B	A nand B	A nor B	A xor B
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0

\square nand ("not and"): A nand $B=\operatorname{not}(A$ and $B)$

- nor ("not or"): A nor $\mathrm{B}=\operatorname{not}(\mathrm{A}$ or B)

- xor ("exclusive or"):
A xor $B=(A$ and $\operatorname{not} B)$ or $(B$ and not $A)$

A curious fact

\square Functional Completeness of NAND and NOR
\square Any logical circuit can be implemented using NAND gates only
\square Same applies to NOR

DeMorgan's Law

Nand: $\quad \neg(A \wedge B)=\neg A \vee \neg B$

Nor: $\quad \neg(\mathrm{A} \vee \mathrm{B})=\neg \mathrm{A} \wedge \neg \mathrm{B}$

DeMorgan's Law

Nand: $\neg(A \wedge B)=\neg A \vee \neg B$
if not ($\mathrm{x}>15$ and $\mathrm{x}<110$): ...
is logically equivalent to
if (not $x>15$) or (not $x<110$): ...
Nor: $\quad \neg(A \vee B)=\neg A \wedge \neg B$
if not ($\mathrm{x}<15$ or $\mathrm{x}>110$): ...
is logically equivalent to
if (not $\mathrm{x}<15$) and (not $\mathrm{x}>110$): ...

A circuit for parity checking

Boolean expressions and circuits

The circuit

3-bit odd parity checker

P =

A	B	C	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

The circuit

3-bit odd parity checker

$P=(\neg \mathrm{A} \wedge \neg \mathrm{B} \wedge \mathrm{C}) \vee(\neg \mathrm{A} \wedge \mathrm{B} \wedge \neg \mathrm{C}) \vee(\mathrm{A} \wedge \neg \mathrm{B} \wedge \neg \mathrm{C}) \vee(\mathrm{A} \wedge \mathrm{B} \wedge \mathrm{C})$

A	B	C	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

There are specific methods for obtaining canonical Boolean expressions from a truth table, such as writing it as a disjunction of conjunctions or as a conjunction of disjunctions.

Note we have four subexpressions above each of them corresponding to exactly one row of the truth table where P is 1 .

The circuit

3-bit odd parity checker

$P=(\neg A \wedge \neg B \wedge C) \vee(\neg A \wedge B \wedge \neg C) \vee(A \wedge \neg B \wedge \neg C) \vee(A \wedge B \wedge C)$

A	B	C	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Circuits for arithmetic

Adding Binary Numbers

A:	0	0	1	1
B:	0	1	0	1
	--	--	--	--
	0	1	1	1

Adding two 1-bit numbers without taking the carry into account

Sum $=A \oplus B$

How can we handle the carry?

Adding Binary Numbers

A:	0	0	1	1
B:	0	1	0	1
	---	---	---	---
	0	1	1	10

Half Adder: adds two single digits

A Full Adder

A	B	C in	C $_{\text {out }}$	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

A Full Adder

$S=A \oplus B \oplus C_{\text {in }}$
$C_{\text {out }}=\left((A \oplus B) \wedge C_{\text {in }}\right) \vee(A \wedge B)$

A Full Adder

Full Adder (FA)

8-bit Full Adder

Control Circuits

\square In addition to circuits for basic logical and arithmetic operations, there are also circuits that determine the order in which operations are carried out and to select the correct data values to be processed.

Multiplexer (MUX)

\square A multiplexer chooses one of its inputs.
2^{n} input lines, n selector lines, and 1 output line

A B
hides details of the circuit on the left
http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html

Arithmetic Logic Unit (ALU)

Depending on the OP code Mux chooses the result of one of the functions (and, or, identity, addition)

Building A Complete Computer from Parts

Computing Machines

\square An instruction is a single arithmetic or logical operation.
\square A program is a sequence of instructions that causes the desired function to be calculated.
\square A computing system is a combination of program and machine (computer).
\square How can we build a computing system that calculates the desired function specified by a program?

Stored Program Computer

http://cse.iitkgp.ac.in/pds/notes/intro.html
A stored program computer is electronic hardware that implements an instruction set.

Von Neumann Architecture

\square Big idea: Data and instructions to manipulate the data are both bit sequences
\square Modern computers built according to the Von Neumann Architecture includes separate units
-To process information (CPU): reads and executes instructions of a program in the order prescribed by the program
-To store information (memory)

Stored Program Computer

Central Processing Unit (CPU)

\square A CPU contains:

- Arithmetic Logic Unit to perform computation
- Registers to hold information
\square Instruction register (current instruction being executed)
\square Program counter (to hold location of next instruction in memory)
\square Accumulator (to hold computation result from ALU)
\square Data register(s) (to hold other important data for future use)
- Control unit to regulate flow of information and operations that are performed at each instruction step

Memory

\square The simplest unit of storage is a bit (1 or 0). Bits are grouped into bytes (8 bits).
\square Memory is a collection of cells each with a unique physical address.
\square We use the generic term cell rather than byte or word because the number of bits in each addressable location varies from machine one machine to another.

- A machine that can generate, for example, 32-bit addresses, can utilize a memory that contains up to 2^{32} memory cells.

Memory Layou†

Address	Content
$100:$	50
$104:$	42
$108:$	85
$112:$	71
$116:$	99

We saw this picture in Unit 6. It hid the bit representation for readability. Assumes that memory is byte addressable and each integer occupies 4 bytes.

Address	Content
$01100100:$... 01100100
$01101000:$... 01010100
$01101100:$... 01010101
$01110000:$... 01000111
$01110100:$... 01100011

In this picture and in reality, addresses and memory contents are sequences of bits.

Stored Program Computer

Two specialized registers: the instruction register holds the current instruction to be executed and the program counter contains the address of the next instruction to be executed.

Processing Instructions

\square Both data and instructions are stored in memory as bit patterns

- Instructions stored in contiguous memory locations
- Data stored in a different part of memory
\square The address of the first instruction is loaded into the program counter and and the processing cycle starts.

Fetch-Decode-Execute Cycle

\square Modern computers include control logic that implements the fetch-decode-execute cycle introduced by John von Neumann:
$\mathbf{\square}$ Fetch next instruction from memory into the instruction register.

- Decode instruction to a control signal and get any data it needs (possibly from memory).
- Execute instruction with data in ALU and store results (possibly into memory).
- Repeat.

Note that all of these steps are implemented with circuits of the kind we have seen in this unit.

Using Abstraction in Computer Design

\square We can use layers of abstraction to hide details of the computer design.
\square We can work in any layer, not needing to know how the lower layers work or how the current layer fits into the larger system.


```
    transistors
    gates
    circuits (adders, multiplexors ... )
    central processing units (ALU, registers ...)
    computer
```

\square A component at a higher abstraction layer uses components from a lower abstraction layer without having to know the details of how it is built. It only needs to know what it does.

Abstraction in Programming

The set of all operations that can be executed by a processor is called its instruction set.
\square Instructions are built into hardware: electronics of the CPU recognize binary representations of the specific instructions. That means each CPU has its own machine language that it understands.
\square But we can write programs without thinking about on what machine our program will run. This is because we can write programs in high-level languages that are abstractions of machine level instructions.

A High-Level Program

\# This programs displays "Hello, World!"
print("Hello world!")

A Low-Level Program

```
title Hello World Program
; This program displays "Hello, World!"
dosseg
.model small
.stack 100h
.data
hello_message db 'Hello, World!',0dh,0ah,'$'
.code
main proc
        mov ax,@data
        mov ds,ax
        mov ah,9
        mov dx,offset hello_message
        int 21h
        mov ax,4C00h
        int 21h
main endp
end main
```


Obtaining Machine Language Instructions

\square Programs are typically written in higher-level languages and then translated into machine language (executable code).
\square A compiler is a program that translates code written in one language into another language.
\square An interpreter translates the instructions one line at a time into something that can be executed by the computer's hardware.

Summary

\square A computing system is a combination of program and machine (computer). In this lecture, we focused on how a machine can be designed using levels of abstraction: gates \rightarrow circuits for elementary operations \rightarrow basic processing units \rightarrow computer

