Computer Organization: Boolean Logic

Representing and Manipulating Data

Last Unit

- How to represent data as a sequence of bits
- How to interpret bit representations
- Use of levels of abstraction in representing more complex information (music, pictures) using simpler building blocks (numbers)

This Unit

- How sequences of bits are implemented using electrical signals, and manipulated by circuits
- Use of levels of abstraction in designing more complex computer components from simpler components

Foundations
Boolean logic is the logic of digital circuits

Implementing Bits

- Computers compute by manipulating electricity according to specific rules.
\square We associate electrical signals inside the machine with bits. Any electrical device with two distinct states (e.g. on/off switch, two distinct voltage or current levels) could implement our bits.
- The rules are implemented by electrical circuits.

Conceptualizing bits and circuits

\square ON or 1: true

O OFF or 0: false

- circuit behavior: expressed in Boolean logic or Boolean algebra

Boolean Logic (Algebra)

- Computer circuitry works based on Boolean Logic (Boolean Algebra) : operations on True (1) and False (0) values.

A	B	$A \wedge B$ (A AND B) (conjunction)	A $\vee B$ (A OR B) (disjunction)
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

- A and B in the table are Boolean variables, AND and $O R$ are operations (also called functions).

Foundations of Digital Computing

- Boolean Algebra was invented by George Boole in 1854 (before digital computers)
- Variables and functions take on only one of two possible values: True (1) or False (0).
- The correspondence between Boolean Logic and circuits was not discovered until 1930s
- Shannon's thesis: A Symbolic Analysis of Relay and Switching Circuits argued that electrical applications of Boolean Algebra could construct any logical, numerical relationship.
- We forget about the logical (truth and falsehood) aspect of Boolean logic and just manipulate symbols.

Boolean Logic \& Truth Tables

E Example: You can think of $A \wedge B$ below as 15110 is fun and 15110 is useful where A stands for the statement 15110 is fun, B stands for the statement 15110 is useful.

A	B	$A \wedge B$ (A AND B) (conjunction)	$A \vee B$ (A OR B) (disjunction)
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Logic gates

the basic elements of digital circuits

Logic Gates

\square A gate is a physical device that implements a Boolean operator by performing basic operations on electrical signals.
\square Nowadays, gates are built from transistors.

${ }_{B}^{A}-D-{ }_{\text {"OR" }}^{A \vee B}$

A Mechanical Implementation

Push-pull logic AND gate

\square For an input pushed-in lever represents 1
\square For an output pushed-in lever represents 0

Source:
randomwraith.com by Martin Howard

Combinational circuits

combinations of logic gates

Combinational Circuits

The logic states of inputs at any given time determine the state of the outputs.

What is Q ? $\quad(A \wedge B) \vee((B \vee C) \wedge(C \wedge B))$

Truth Table of a Circuit

How do I know that there should be 8 rows in the truth table?
http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

A	B	C	Q
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

Truth Table of a Circuit

A	B	C	Q
0	0	0	0
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

Truth Table of a Circuit

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

Truth Table of a Circuit

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

Truth Table of a Circuit

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

Truth Table of a Circuit

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

Truth Table of a Circuit

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

Truth Table of a Circuit

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	

Describes the relationship between inputs and outputs of a device

Truth Table of a Circuit

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Describes the relationship between inputs and outputs of a device

Describing Behavior of Circuits

- Boolean expressions
- Circuit diagrams
- Truth tables

Equivalent notations

Manipulating circuits

Boolean algebra and logical equivalence

Why manipulate circuits?

\square The design process
■simplify a complex design for easier manufacturing, faster or cooler operation, ...
\square Boolean algebra helps us find another design guaranteed to have same behavior

Logical Equivalence

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Can we come up with a simpler circuit implementing the same truth table? Simpler circuits are typically cheaper to produce, consume less energy etc.

Logical Equivalence

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$Q=B \wedge(A \vee C)$
This smaller circuit is logically equivalent to the one above: they have the same truth table. By using laws of Boolean Algebra we convert a circuit to another equivalent circuit.

Laws for the Logical Operators \wedge and \vee

 (Similar to \times and +)\square Commutative: $\quad A \wedge B=B \wedge A \quad A \vee B=B \vee A$

- Associative:

$$
\begin{aligned}
& A \wedge B \wedge C=(A \wedge B) \wedge C=A \wedge(B \wedge C) \\
& A \vee B \vee C=(A \vee B) \vee C=A \vee(B \vee C)
\end{aligned}
$$

- Distributive:

$$
\begin{aligned}
& A \wedge(B \vee B)=(A \wedge B) \vee(A \wedge C) \\
& A \vee(B \wedge C)=(A \vee B) \wedge(A \vee C)
\end{aligned}
$$

- Identity:

$$
A \wedge 1=A
$$

$$
A \vee 0=A
$$

- Dominance:

$$
A \wedge 0=0
$$

$$
A \vee 1=1
$$

- Idempotence:

$$
A \wedge A=A
$$

$$
A \vee A=A
$$

- Complementation: $\mathrm{A} \wedge \neg \mathrm{A}=0$ $A \vee \neg A=1$
- Double Negation: $\neg \neg \mathrm{A}=\mathrm{A}$

Laws for the Logical Operators \wedge and \vee (Similar to \times and +)

- Commutative:

$$
A \wedge B=B \wedge A \quad A \vee B=B \vee A
$$

- Associative:

$$
\begin{aligned}
& A \wedge B \wedge C=(A \wedge B) \wedge C=A \wedge(B \wedge C) \\
& A \vee B \vee C=(A \vee B) \vee C=A \vee(B \vee C)
\end{aligned}
$$

- Distributive:

$$
\begin{aligned}
& A \wedge(B \vee C)=(A \wedge B) \vee(A \wedge C) \\
& A \vee(B \wedge C)=(A \vee B) \wedge(A \vee C)
\end{aligned}
$$

- Identity:
$A \vee 0=A$

The A's and B's here are schematic variables! You can instantiate them with any expression that has a Boolean value:

$$
(x \vee y) \wedge z=z \wedge(x \vee y) \text { (by commutativity) }
$$

Applying Properties for \wedge and \vee

Showing $(x \wedge y) \vee((y \vee z) \wedge(z \wedge y))=y \wedge(x$ or $z)$

Commutativity $A \wedge B=B \wedge A$

$$
(x \wedge y) \vee((z \wedge y) \wedge(y \vee z))
$$

Distributivity $A \wedge(B \vee C)=(A \wedge B) \vee(A \wedge C)$

$$
(x \wedge y) \vee(z \wedge y \wedge y) \vee(z \wedge y \wedge z)
$$

Associativity, Commutativity, Idempotence

$$
(x \wedge y) \vee((z \wedge y) \vee(y \wedge z))
$$

Commutativity, idempotence $A \wedge A=A$

$$
((y) \wedge) \vee(\square \wedge z)
$$

Distributivity (backwards) (A) $\wedge B) \vee(A) \wedge C)=(A) \wedge(B \vee C)$

$$
\text { (v) } \wedge(x \vee z)
$$

Conclusion:

$$
(x \wedge y) \vee((y \vee z) \wedge(z \wedge y))=y \wedge(x \vee z)
$$

Extending the system

more gates and DeMorgan's laws

More gates (NAND, NOR, XOR)

A	B	A nand B	A nor B	A xor B
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0

\square nand ("not and"): A nand $B=\operatorname{not}(A$ and $B)$

- nor ("not or"): A nor B = not (A or B)

- xor ("exclusive or"):
A xor $B=(A$ and $\operatorname{not} B)$ or $(B$ and not $A)$

A curious fact

\square Functional Completeness of NAND and NOR
\square Any logical circuit can be implemented using NAND gates only
\square Same applies to NOR

DeMorgan's Law

Nand: $\quad \neg(\mathrm{A} \wedge \mathrm{B})=\neg \mathrm{A} \vee \neg \mathrm{B}$

Nor: $\quad \neg(\mathrm{A} \vee \mathrm{B})=\neg \mathrm{A} \wedge \neg \mathrm{B}$

DeMorgan's Law

Nand: $\neg(A \wedge B)=\neg A \vee \neg B$
if not ($\mathrm{x}>15$ and $\mathrm{x}<110$): ...
is logically equivalent to
if (not $x>15$) or (not $x<110$): ...
Nor: $\quad \neg(A \vee B)=\neg A \wedge \neg B$
if not ($\mathrm{x}<15$ or $\mathrm{x}>110$): ...
is logically equivalent to
if (not $x<15$) and (not $x>110$): ...

A circuit for parity checking

Boolean expressions and circuits

A Boolean expression that checks parity

\square 3-bit odd parity checker F: an expression that should be true when the count of 1 bits is odd: when 1 or 3 of the bits are 1 s .

$$
P=(\neg A \wedge \neg B \wedge C) \vee(\neg A \wedge B \wedge \neg C) \vee(A \wedge \neg B \wedge \neg C) \vee(A \wedge B \wedge C)
$$

A	B	C	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

There are specific methods for obtaining canonical Boolean expressions from a truth table, such as writing it as a disjunction of conjunctions or as a conjunction of disjunctions.

Note we have four subexpressions above each of them corresponding to exactly one row of the truth table where P is 1 .

The circuit

3-bit odd parity checker

$P=(\neg A \wedge \neg B \wedge C) \vee(\neg A \wedge B \wedge \neg C) \vee(A \wedge \neg B \wedge \neg C) \vee(A \wedge B \wedge C)$

A	B	C	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Summary

You should be able to:

- Identify basic gates
- Describe the behavior of a gate or circuit using Boolean expressions, truth tables, and logic diagrams
- Transform one Boolean expression into another given the laws of Boolean algebra

Next Time

- How circuits are combined to form a computer
-Von Neumann architecture revisited
- Fetch - Decode - Execute Cycle

