Computer Organization: Boolean Logic

Representing and Manipulating Data

Last Unit

- How to represent data as a sequence of bits
- How to interpret bit representations
- Use of levels of abstraction in representing more complex information (music, pictures) using simpler building blocks (numbers)

This Unit

- How sequences of bits are implemented using electrical signals, and manipulated by circuits
- Use of levels of abstraction in designing more complex computer components from simpler components

Foundations

Boolean logic is the logic of digital circuits

Implementing Bits

Computers compute by manipulating electricity according to specific rules.

We associate electrical signals inside the machine with bits. Any electrical device with two distinct states (e.g. on/off switch, two distinct voltage or current levels) could implement our bits.

The rules are implemented by electrical circuits.

Conceptualizing bits and circuits

ON or 1: true

OFF or **0**: false

circuit behavior: expressed in Boolean logic or Boolean algebra

Boolean Logic (Algebra)

Computer circuitry works based on Boolean Logic (Boolean Algebra) : operations on True (1) and False (0) values.

Α	В	A ∧ B (A AND B) (conjunction)	A ∨ B (A OR B) (disjunction)	A	¬ A (NOT A) (negation)
0	0	0	0	0	1
0	1	0	1	1	0
1	0	0	1		
1	1	1	1		

• A and B in the table are Boolean variables, AND and OR are operations (also called functions).

Foundations of Digital Computing

- Boolean Algebra was invented by George Boole in 1854 (before digital computers)
 - Variables and functions take on only one of two possible values: True (1) or False (0).
- The correspondence between Boolean Logic and circuits was not discovered until 1930s
 - Shannon's thesis: A Symbolic Analysis of Relay and Switching Circuits argued that electrical applications of Boolean Algebra could construct any logical, numerical relationship.
 - We forget about the logical (truth and falsehood) aspect of Boolean logic and just manipulate symbols.

Boolean Logic & Truth Tables

Example: You can think of A A B below as 15110 is fun and 15110 is useful where A stands for the statement 15110 is fun, B stands for the statement 15110 is useful.

Α	В	AΛB (A AND B) (conjunction)	A ∨ B (A OR B) (disjunction)	Α	¬¬A (NOT A) (negation)
0	0	0	0	0	1
0	1	0	1	1	0
1	0	0	1		
1	1	1	1		

Logic gates

the basic elements of digital circuits

Logic Gates

A gate is a physical device that implements a Boolean operator by performing basic operations on electrical signals.

Nowadays, gates are built from transistors.

A Mechanical Implementation

Push-pull logic AND gate

- For an input pushed-in lever represents 1
- For an output pushed-in lever represents 0

Source: randomwraith.com by Martin Howard

Combinational circuits

combinations of logic gates

Combinational Circuits

The logic states of inputs at any given time determine the state of the outputs.

What is Q? $(A \land B) \lor ((B \lor C) \land (C \land B))$

$$\mathsf{Q} = (\mathsf{A} \land \mathsf{B}) \lor ((\mathsf{B} \lor \mathsf{C}) \land (\mathsf{C} \land \mathsf{B}))$$

How do I know that there should be 8 rows in the truth table?

Α	В	С	Q
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

$$\mathsf{Q} = (\mathsf{A} \land \mathsf{B}) \lor ((\mathsf{B} \lor \mathsf{C}) \land (\mathsf{C} \land \mathsf{B}))$$

Α	В	С	Q
0	0	0	0
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

$$\mathsf{Q} = (\mathsf{A} \land \mathsf{B}) \lor ((\mathsf{B} \lor \mathsf{C}) \land (\mathsf{C} \land \mathsf{B}))$$

Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

$$\mathsf{Q} = (\mathsf{A} \land \mathsf{B}) \lor ((\mathsf{B} \lor \mathsf{C}) \land (\mathsf{C} \land \mathsf{B}))$$

Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

$$\mathsf{Q} = (\mathsf{A} \land \mathsf{B}) \lor ((\mathsf{B} \lor \mathsf{C}) \land (\mathsf{C} \land \mathsf{B}))$$

Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

$$\mathsf{Q} = (\mathsf{A} \land \mathsf{B}) \lor ((\mathsf{B} \lor \mathsf{C}) \land (\mathsf{C} \land \mathsf{B}))$$

Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

$$\mathsf{Q} = (\mathsf{A} \land \mathsf{B}) \lor ((\mathsf{B} \lor \mathsf{C}) \land (\mathsf{C} \land \mathsf{B}))$$

Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	
1	1	1	

Describes the relationship between inputs and outputs of a device

$$\mathsf{Q} = (\mathsf{A} \land \mathsf{B}) \lor ((\mathsf{B} \lor \mathsf{C}) \land (\mathsf{C} \land \mathsf{B}))$$

Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	

Describes the relationship between inputs and outputs of a device

$$\mathsf{Q} = (\mathsf{A} \land \mathsf{B}) \lor ((\mathsf{B} \lor \mathsf{C}) \land (\mathsf{C} \land \mathsf{B}))$$

Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Describes the relationship between inputs and outputs of a device

Describing Behavior of Circuits

- Boolean expressions
- Circuit diagrams
- Truth tables

Equivalent notations

Manipulating circuits

Boolean algebra and logical equivalence

Why manipulate circuits?

 The design process
 simplify a complex design for easier manufacturing, faster or cooler operation, ...

Boolean algebra helps us find another design guaranteed to have same behavior

Logical Equivalence

Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Can we come up with a simpler circuit implementing the same truth table? Simpler circuits are typically cheaper to produce, consume less energy etc.

Logical Equivalence

$$\mathsf{Q} = (\mathsf{A} \land \mathsf{B}) \lor ((\mathsf{B} \lor \mathsf{C}) \land (\mathsf{C} \land \mathsf{B}))$$

Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

 $- Q = B \land (A \lor C)$

This smaller circuit is logically equivalent to the one above: they have the same truth table. By using laws of Boolean Algebra we convert a circuit to another equivalent circuit.

Laws for the Logical Operators \wedge and \vee (Similar to \times and +)

- Commutative: $A \wedge B = B \wedge A$ $A \lor B = B \lor A$ $A \land B \land C = (A \land B) \land C = A \land (B \land C)$ $A \lor B \lor C = (A \lor B) \lor C = A \lor (B \lor C)$ Associative: $A \land (B \lor B) = (A \land B) \lor (A \land C)$ $A \lor (B \land C) = (A \lor B) \land (A \lor C)$ Distributive: Identity: $A \wedge 1 = A$ $A \lor 0 = A$ $A \vee 1 = 1$ Dominance: $A \wedge 0 = 0$ Idempotence: $A \wedge A = A$ $A \lor A = A$ **Complementation:** $A \land \neg A = 0$ $A \lor \neg A = 1$
 - Double Negation: $\neg \neg A = A$

Laws for the Logical Operators \wedge and \vee (Similar to \times and +)

Commutative:	$A \wedge B = B \wedge A$	$A \lor B = B \lor A$
Associative:	$A \land B \land C = (A \land B) \land C$ $A \lor B \lor C = (A \lor B) \lor C$	
Distributive:	$A \land (B \lor C) = (A \land B) \lor A \lor (B \land C) = (A \lor B) \land$	
Identity:	$A \wedge 1 = A$	$A \lor 0 = A$

The A's and B's here are schematic variables! You can instantiate them with any expression that has a Boolean value:

$$(x \lor y) \land z = z \land (x \lor y) \text{ (by commutativity)}$$

$$A \land B = B \land A$$

Applying Properties for \wedge and \vee

Showing $(x \land y) \lor ((y \lor z) \land (z \land y)) = y \land (x \text{ or } z)$ Commutativity $A \land B = B \land A$ $(x \land y) \lor ((z \land y) \land (y \lor z))$ Distributivity $A \land (\underline{B \lor C}) = (A \land \underline{B}) \lor (A \land C)$ $(x \land y) \lor (z \land y \land y) \lor (z \land y \land z)$ Associativity, Commutativity, Idempotence $(x \land y) \lor ((z \land y) \lor (y \land z))$ Commutativity, idempotence $A \land A = A$ $((y) \land x) \lor (y) \land z)$ Distributivity (backwards) $(A \land B) \lor (A \land C) = (A \land (B \lor C))$ $(y) \land (x \lor z)$ **Conclusion**:

 $(x \land y) \lor ((y \lor z) \land (z \land y)) = y \land (x \lor z)$

Extending the system

more gates and DeMorgan's laws

More gates (NAND, NOR, XOR)

	Α	В	A nand B	A nor B	A xor B
	0	0	1	1	0
	0	1	1	0	1
	1	0	1	0	1
	1	1	0	0	0
and	("not and")	A nand B =	not (A and	B)	а — в —

 \square nor ("not or"): A nor B = not (A or B)

xor ("exclusive or"): A xor B = (A and not B) or (B and not A)

 Functional Completeness of NAND and NOR
 Any logical circuit can be implemented using NAND gates only

Same applies to NOR

DeMorgan's Law

Nand:
$$\neg(A \land B) = \neg A \lor \neg B$$

Nor: $\neg(A \lor B) = \neg A \land \neg B$

DeMorgan's Law

Nand:
$$\neg(A \land B) = \neg A \lor \neg B$$

if not (x > 15 and x < 110): ...
is logically equivalent to
if (not x > 15) or (not x < 110): ...

Nor: $\neg (A \lor B) = \neg A \land \neg B$ if not (x < 15 or x > 110): ... is logically equivalent to if (not x < 15) and (not x > 110): ...

.

A circuit for parity checking

Boolean expressions and circuits

A Boolean expression that checks parity

3-bit odd parity checker F: an expression that should be true when the count of 1 bits is odd: when 1 or 3 of the bits are 1s.

 $\mathsf{P} = (\neg \mathsf{A} \land \neg \mathsf{B} \land \mathsf{C}) \lor (\neg \mathsf{A} \land \mathsf{B} \land \neg \mathsf{C}) \lor (\mathsf{A} \land \neg \mathsf{B} \land \neg \mathsf{C}) \lor (\mathsf{A} \land \mathsf{B} \land \mathsf{C})$

Α	В	С	Р
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

There are specific methods for obtaining canonical Boolean expressions from a truth table, such as writing it as a disjunction of conjunctions or as a conjunction of disjunctions.

Note we have four subexpressions above each of them corresponding to exactly one row of the truth table where P is 1.

3-bit odd parity checker

Α	В	С	Р
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Summary

You should be able to:

- Identify basic gates
- Describe the behavior of a gate or circuit using Boolean expressions, truth tables, and logic diagrams
- Transform one Boolean expression into another given the laws of Boolean algebra

Next Time

How circuits are combined to form a computer

Von Neumann architecture revisited

Fetch – Decode - Execute Cycle

MEMORY