
Computer Organization:
Boolean Logic

Representing and Manipulating Data

Last Unit

¤ How to represent data as a
sequence of bits

¤ How to interpret bit
representations

¤ Use of levels of abstraction
in representing more
complex information
(music, pictures) using
simpler building blocks
(numbers)

This Unit

¤ How sequences of bits are
implemented using
electrical signals, and
manipulated by circuits

¤ Use of levels of abstraction
in designing more complex
computer components
from simpler components

Foundations
Boolean logic is the logic of digital circuits

3

Implementing Bits

¤ Computers compute by manipulating electricity
according to specific rules.

¤ We associate electrical signals inside the machine with
bits. Any electrical device with two distinct states (e.g.
on/off switch, two distinct voltage or current levels) could
implement our bits.

¤ The rules are implemented by electrical circuits.

Conceptualizing bits and circuits

¤ ON or 1: true

¤ OFF or 0: false

¤ circuit behavior: expressed in Boolean logic or Boolean
algebra

5

Boolean Logic (Algebra)
¤ Computer circuitry works based on Boolean Logic

(Boolean Algebra) : operations on True (1) and False (0)
values.

6

A B A Λ B
(A AND B)
(conjunction)

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

A ¬ A
(NOT A)
(negation)

0 1
1 0

• A and B in the table are Boolean variables, AND
and OR are operations (also called functions).

Foundations of Digital Computing

¤ Boolean Algebra was invented by George Boole in 1854
(before digital computers)
¤ Variables and functions take on only one of two possible values:

True (1) or False (0).

¤ The correspondence between Boolean Logic and circuits
was not discovered until 1930s
¤ Shannon’s thesis: A Symbolic Analysis of Relay and Switching

Circuits argued that electrical applications of Boolean Algebra
could construct any logical, numerical relationship.

¤ We forget about the logical (truth and falsehood) aspect of
Boolean logic and just manipulate symbols.

7

Boolean Logic & Truth Tables
¤ Example: You can think of A Ù B below as 15110 is fun and

15110 is useful where A stands for the statement 15110 is fun, B
stands for the statement 15110 is useful.

8

A B A Λ B
(A AND B)
(conjunction)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

A ¬¬A
(NOT A)
(negation)

0 1

1 0

Logic gates
the basic elements of digital circuits

9

Logic Gates

10

A
B

A
B

A Ú B
“OR”

¬ A
“NOT”

A Ù B
“AND”

¤A gate is a physical device that implements a
Boolean operator by performing basic
operations on electrical signals.

¤Nowadays, gates are built from transistors.

Physical behavior of circuits is
beyond the scope of our course.

A Mechanical
Implementation

Push-pull logic AND gate

¤ For an input pushed-in lever represents 1

¤ For an output pushed-in lever represents 0

Source:
randomwraith.com
by Martin Howard

Combinational circuits
combinations of logic gates

12

Combinational Circuits

13

A Ù B

B Ú C

C Ù B

(B Ú C) Ù (C Ù B)

What is Q? (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND
OR

OR

The logic states of inputs at any given time determine the state of the outputs.

Truth Table of a Circuit

14

A B C Q
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

How do I know that there should be
8 rows in the truth table?

Describes the relationship between
inputs and outputs of a device

Truth Table of a Circuit

15

A B C Q
0 0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

Describes the relationship between
inputs and outputs of a device

Truth Table of a Circuit

16

A B C Q
0 0 0 0
0 0 1 0
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

Describes the relationship between
inputs and outputs of a device

Truth Table of a Circuit

17

A B C Q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

Describes the relationship between
inputs and outputs of a device

Truth Table of a Circuit

18

A B C Q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0
1 0 1
1 1 0
1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

Describes the relationship between
inputs and outputs of a device

Truth Table of a Circuit

19

A B C Q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1
1 1 0
1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

Describes the relationship between
inputs and outputs of a device

Truth Table of a Circuit

20

A B C Q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0
1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

Describes the relationship between
inputs and outputs of a device

Truth Table of a Circuit

21

A B C Q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

Describes the relationship between
inputs and outputs of a device

Truth Table of a Circuit

22

A B C Q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

Describes the relationship between
inputs and outputs of a device

Describing Behavior of Circuits

¤ Boolean expressions

¤ Circuit diagrams

¤ Truth tables

23

Equivalent notations

Manipulating circuits
Boolean algebra and logical equivalence

24

Why manipulate circuits?

¤The design process
¤simplify a complex design for easier

manufacturing, faster or cooler
operation, …

¤Boolean algebra helps us find another
design guaranteed to have same
behavior

25

Logical Equivalence

26

A B C Q
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

Can we come up with a simpler circuit implementing the same truth table?
Simpler circuits are typically cheaper to produce, consume less energy etc.

Logical Equivalence

27

A B C Q
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

Q = B Ù (A Ú C)

AND

AND

AND

OR

OR

OR
AND

This smaller circuit is logically equivalent
to the one above: they have the same truth table.
By using laws of Boolean Algebra we convert a
circuit to another equivalent circuit.

Laws for the Logical Operators Ù and Ú
(Similar to � and +)

¤ Commutative: A Ù B = B Ù A A Ú B = B Ú A

¤ Associative: A Ù B Ù C = (A Ù B) Ù C = A Ù (B Ù C)
A Ú B Ú C = (A Ú B) Ú C = A Ú (B Ú C)

¤ Distributive: A Ù (B Ú B) = (A Ù B) Ú (A Ù C)
A Ú (B Ù C) = (A Ú B) Ù (A Ú C)

¤ Identity: A Ù 1 = A A Ú 0 = A

¤ Dominance: A Ù 0 = 0 A Ú 1 = 1

¤ Idempotence: A Ù A = A A Ú A = A

¤ Complementation: A Ù ¬A = 0 A Ú ¬A = 1

¤ Double Negation: ¬ ¬ A = A

28

¤ Commutative: A Ù B = B Ù A A Ú B = B Ú A

¤ Associative: A Ù B Ù C = (A Ù B) Ù C = A Ù (B Ù C)
A Ú B Ú C = (A Ú B) Ú C = A Ú (B Ú C)

¤ Distributive: A Ù (B Ú C) = (A Ù B) Ú (A Ù C)
A Ú (B Ù C) = (A Ú B) Ù (A Ú C)

¤ Identity: A Ù 1 = A A Ú 0 = A

……The A’s and B’s here are schematic variables! You can instantiate them with
any expression that has a Boolean value:

(x Ú y) Ù z = z Ù (x Ú y) (by commutativity)

A Ù B = B Ù A

Not true for
+ and �

Laws for the Logical Operators Ù and Ú
(Similar to � and +)

Showing (x Ù y) Ú ((y Ú z) Ù (z Ù y)) = y Ù (x or z)
Commutativity A Ù B = B Ù A

(x Ù y) Ú ((z Ù y) Ù (y Ú z))
Distributivity A Ù (B Ú C) = (A Ù B) Ú (A Ù C)

(x Ù y) Ú (z Ù y Ù y) Ú(z Ù y Ù z)
Associativity, Commutativity, Idempotence

(x Ù y) Ú ((z Ù y) Ú (y Ù z))
Commutativity, idempotence A Ù A = A

(y Ù x) Ú (y Ù z)
Distributivity (backwards) (A Ù B) Ú (A Ù C) = A Ù (B Ú C)

y Ù (x Ú z)
Conclusion:

(x Ù y) Ú ((y Ú z) Ù (z Ù y)) = y Ù (x Ú z)

Applying Properties for Ù and Ú

Extending the system
more gates and DeMorgan’s laws

31

More gates (NAND, NOR, XOR)

32

A B A nand
B

A nor B A xor B

0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 0 0 0

¤ nand (“not and”): A nand B = not (A and B)

¤ nor (“not or”): A nor B = not (A or B)

¤ xor (“exclusive or”):
A xor B = (A and not B) or (B and not A)

A
B

A
B

A
B

¬(A Ù B)

¬(A Ú B)

A Å B

A curious fact

¤Functional Completeness of NAND and NOR
¤Any logical circuit can be implemented using

NAND gates only

¤Same applies to NOR

DeMorgan’s Law

Nand: ¬(A Ù B) = ¬A Ú ¬B

Nor: ¬(A Ú B) = ¬A Ù ¬B

34

DeMorgan’s Law

Nand: ¬(A Ù B) = ¬A Ú ¬B
if not (x > 15 and x < 110): ...
is logically equivalent to
if (not x > 15) or (not x < 110): ...

Nor: ¬(A Ú B) = ¬A Ù ¬B
if not (x < 15 or x > 110): ...
is logically equivalent to
if (not x < 15) and (not x > 110): ...

35

A circuit for parity checking
Boolean expressions and circuits

36

A Boolean expression that checks parity

¤ 3-bit odd parity checker F: an expression that should be true when the
count of 1 bits is odd: when 1 or 3 of the bits are 1s.

37

A B C P
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

P = (¬A Ù ¬B Ù C) Ú (¬A Ù B Ù ¬C) Ú (A Ù ¬BÙ ¬C) Ú (A Ù B Ù C)

There are specific methods for obtaining
canonical Boolean expressions from a
truth table, such as writing it as a disjunction of
conjunctions or as a conjunction of
disjunctions.

Note we have four subexpressions above
each of them corresponding to exactly one
row of the truth table where P is 1.

The circuit

3-bit odd parity checker
P = (¬A Ù ¬BÙ C) Ú (¬A Ù B Ù ¬C) Ú (A Ù ¬BÙ ¬C) Ú (A Ù B Ù C)

38

A B C P
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

A

B

C
P

P = (A Å B) Å C

Summary

You should be able to:

¤ Identify basic gates

¤ Describe the behavior of a gate or circuit using Boolean
expressions, truth tables, and logic diagrams

¤ Transform one Boolean expression into another given the
laws of Boolean algebra

39

Next Time

¤How circuits are combined to form a
computer
¤Von Neumann architecture revisited
¤Fetch – Decode - Execute Cycle

40

