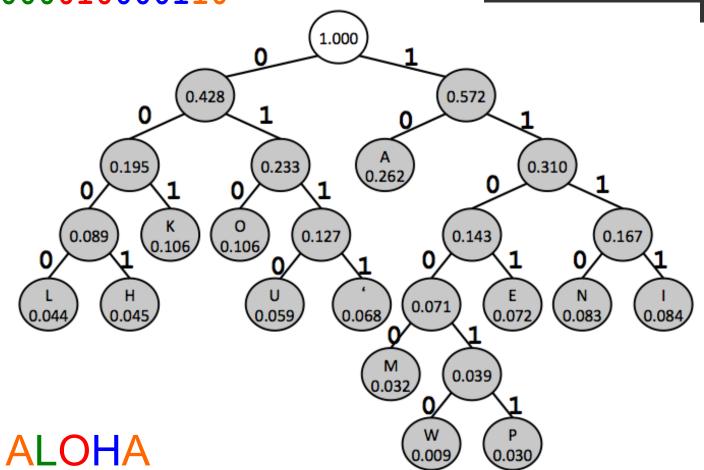
Data Representation: Images and Sound

Announcements

Lab Exam?
Tomorrow:
PS 7
Lab 8
PA 7

Yesterday

ALOHA


- Data Representation
- Data Compression
- Information and redundancy
- Huffman Codes

Fixed Width: 00010110100100110001 20 bits

Huffman Code: 10 0000 010 0001 10 15 bits

Decoding

1000001000110

• To find the character use the bits to determine path from root

parity bits

error correction

Noisy Communication Channels

Suppose we're sending ASCII characters over the network

Network communications may erroneously alter bits of a message

Simple error detection method: the parity bit

Reminder: ASCII table

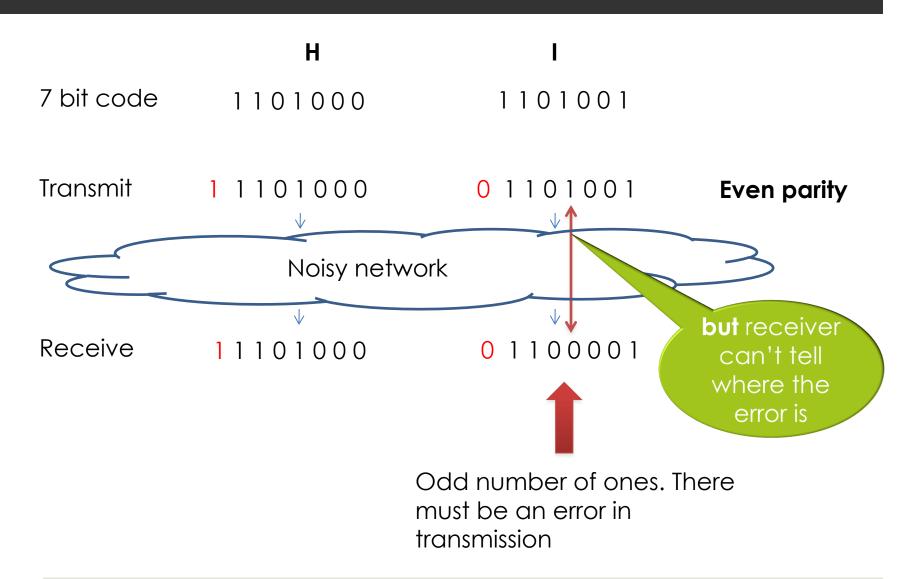
Code	Char	Code	Char	Code	Char	Code	Char	Code	Char	Code	Char
32	[space]	48	0	64	@	80	Р	96	``	112	р
33	!	49	1	65	A	81	Q	97	a	113	q
34		50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	С	83	S	99	c	115	s
36	\$	52	4	68	D	84	Т	100	d	116	t
37	%	53	5	69	E	85	U	101	e	117	u
38	&	54	6	70	F	86	V	102	f	118	v
39	•	55	7	71	G	87	w	103	g	119	w
40	(56	8	72	н	88	Х	104	h	120	x
41)	57	9	73	1	89	Y	105	i	121	У
42	*	58	:	74	J	90	Z	106	j	122	z
43	+	59	;	75	K	91	[107	k	123	{
44	,	60	<	76	L	92	١	108	1	124	Í
45	-	61	=	77	M	93]	109	m	125	}
46		62	>	78	N	94	Ā	110	n	126	~
47	/	63	?	79	0	95	_	111	0	127	[backspace]

2⁷ (128) characters

7 bits needed for binary representation

(Not shown: control characters like tab and newline, values 0...31)

Parity


Idea: for each character (sequence of 7 bits), count the number of bits that are 1

- Sender and receiver agree to use even parity (or odd parity); sender sends extra leftmost bit
 - Even parity: Set the leftmost bit so that the number of 1's in the byte is even.

Parity Example

- "M" is transmitted using even parity.
- "M" in ASCII is 77₁₀, or 100 1101 in binary
 four of these bits are 1
- Transmit 0 100 1101 to make the number of 1-bits even.
- Receiver counts the number of 1-bits in character received
 - if odd, something went wrong, request retransmission
 - □ if even, proceed normally
 - Two bits could have been flipped, giving the illusion of correctness. But the probability of 2 or more bits in error is low.

Parity Example

Parity and redundancy

An ASCII character with a correct parity bit contains *redundant information*

...because the parity bit is *predictable* from the other bits

This idea leads into the basics of information theory

Today:

- Human sensory systems and digital representations
- Digitizing images
- Digitizing sounds
- Video

human sensory systems

Why Do We Care?

- We want to represent and reproduce sensory experiences sights and sounds
 - typically this leads to storing a huge amount of data
- Data compression for images and sounds can exploit limits on human senses
 - throw away information not needed for good-quality experience

Human Limitations

Range

- only certain pitches and loudnesses can be heard
- only certain kinds of light are visible, and there must be enough / not too much light

Discrimination

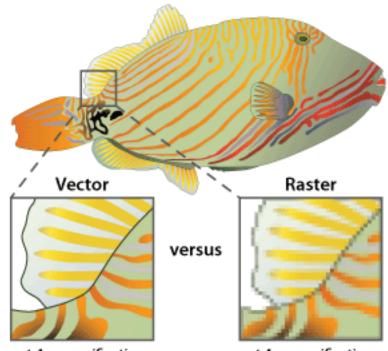
pitches, loudnesses, colors, intensities can't be distinguished unless they are different enough

Coding

nervous systems "encode" experience, e.g. rods and cones in the eye

images

digitizing



Human Vision

- Separate receptors for gray scale/dim light and color/bright light perception
- Receptors feed nervous subsystems that respond to contrast and other factors
- Spatial and temporal limits on discrimination
 e.g. affect frame rates in video
- Three kinds of color receptors (RGB)

Encoding Images: Vector vs. Raster / Bit-map

- There are two major ways to store images:
 - Vector graphics: a series of lines or curves. Expensive to compute but smoothly rescales.
 - Raster or Bit-map graphics: an array of pixels. Cheap to compute, but scales poorly.

at 4x magnification

at 4x magnification

Recording Photographic Images

- How do digital cameras record images?
- Basic idea: array of receptors: bit-map
 - each receptor records a pixel by "counting" the number of photons that strike it during exposure
- Red, green, blue recorded separately
 each point on image produced by group of three receptors
 each receptor behind a color filter

"Raw" Bit-Mapped Images

Array of pixels

one pixel = three numbers (RGB)

- What other information do we need to display the image?
 - Iook at TIFF file
 - □ image is just a bunch of numbers
 - we need to know how wide/high it is to make sense of it

"Raw" Bit-Mapped Image Example

255, 0, 0, 255, 0, 0, 255, 0, 0, ... 255, 0, 0

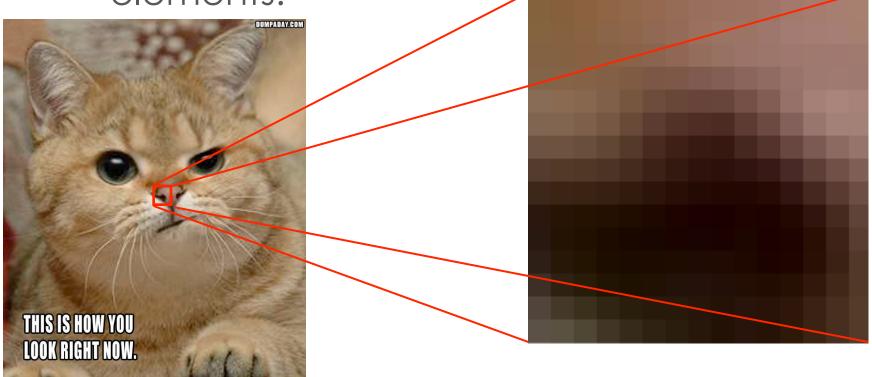
Image Formats

Exploit human perceptual system in quality/size tradeoff

Exploit specialized types of images to get a lot of compression

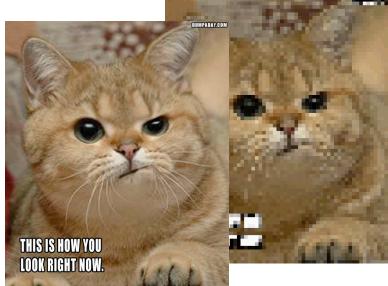
Common Standards

□ Vector: SVG, EPS, AI, CDR.

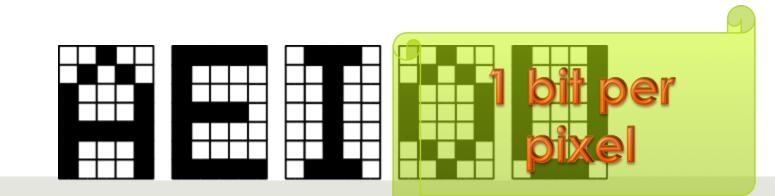

- Special-purpose: commonly used for high-quality illustrations, graphics, etc.
- Raster: JPEG (compression), GIF (compression, transparency), PNG (web portability), TIFF (printing, huge), BMP (huge)
 - Commonly used for photos and pretty much everything

Bit mapped images

A closer look.

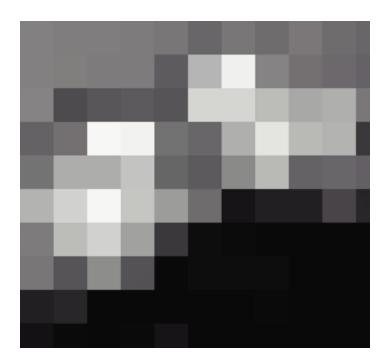

Pixels

A bit-mapped image is stored in a computer as a sequence of pixels, picture elements.


Resolution

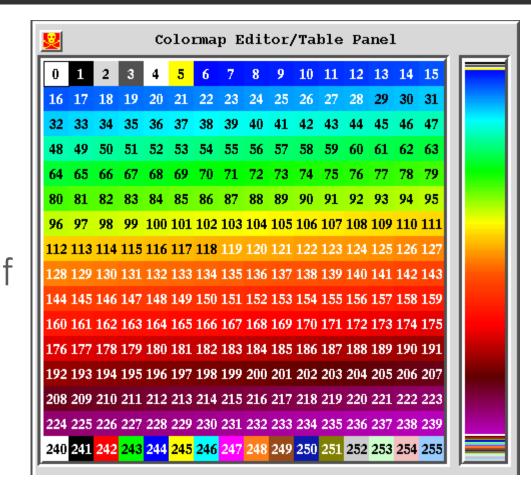
- The resolution of an image is the number of pixels used to represent the image (e.g. 1024 X 768).
- Each pixel represents the average color in that region.
- The more pixels per area, the higher the resolution, and the more accurate the image will appear.

Storing Bitmap Images

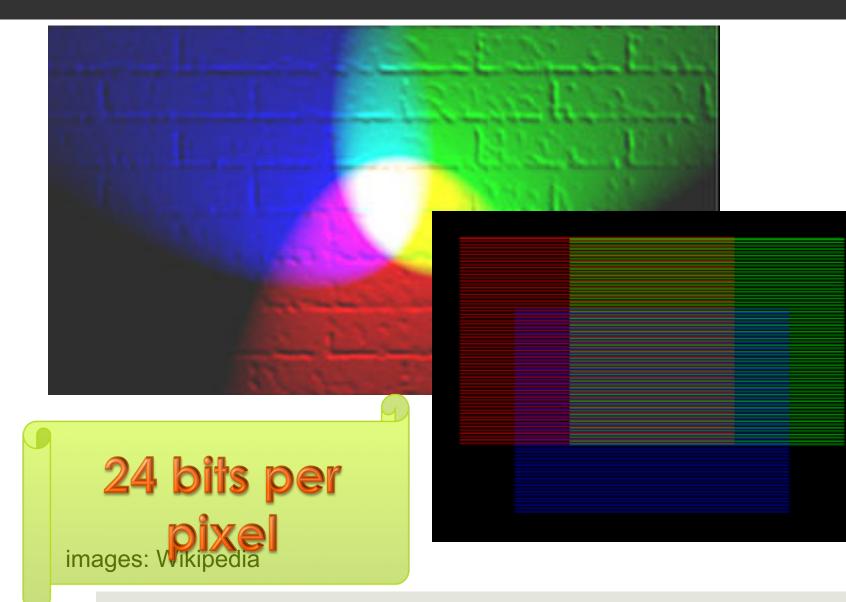

- In bitmapped images, each pixel is represented in computer memory in binary, just like other data types.
- If pixels of an image are black or white only, then we only need 1 bit per pixel to store the image, e.g. 00100 might be top row of "A".

Grayscale Images

- Grayscale images contain pixels that are various shades of gray, from black (maximum gray) to white (minimum gray).
- If there are 256 levels of gray for pixels, we can represent each pixel using 8 bits.
 111111111 = white
 ... (shades of gray)
 00000000 = black

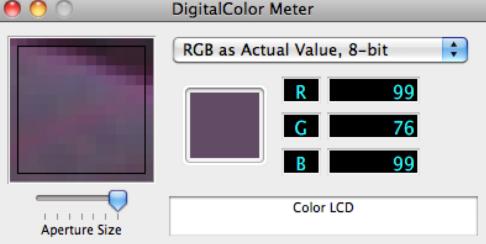


256-color images (8-bit color)


Each pixel is represented with a 8-bit value that is an index into a palette of 256 colors.

8 bits per

ixel



RGB color systems

RGB-color images (24-bit color)

- Colors are represented as mixtures of red (R), green (G), and blue (B).
- Each pixel is represented using three 8-bit values, one for each color component.
- This representation allows for 2²⁴ = 16,777,216 different colors.
- This representation is also called "true color".
- Explore with DigitalColor Meter

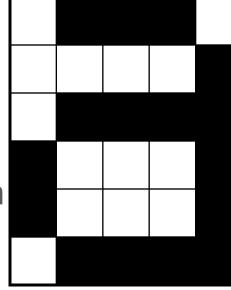
(image from Wikipedia)

Comparing Representations

- For a 640 X 480 image (307,200 pixels), how many bytes needed?
 - B&W 38,400 bytes (307200/8)
 - 8-bit grayscale 307,200 bytes
 - 256-color (8-bit color) 307,200 bytes
 - 24-bit color
 921,600
 byte(307200*24/8)
- A single RGB image of size 1600 X 1200 requires over 5.76 million bytes!

so we need compression

Compressing Raster Data


Run-length encoding (lossless, limited)

Color maps (GIF, good for graphics with solid areas of color)

JPEG (lossy - a suite of techniques exploiting human visual perception)

RLE compression

- Run-Length Encoding is a lossless compression technique used in early image files.
- Instead of storing the 8-bit value for every Color, Run, Color, Run, Color, Run, Color, Run, ... pixel, we store an 8-bit value along with 255,4,0,1 how many of these 255,1,0,4 occur in a row (run).
 - This saves a lot **when** there are large runs of the same color.

255,1,0,3,255,1 0,1,255,3,0,1 0,1,255,3,0,1 255,1,0,4

(Colors: 0=Black, 255=White)

RLE Comparison

RLE 2 bytes 2 bytes 6 bytes 6 bytes 6 bytes 10 bytes 10 bytes 6 bytes 6 bytes 6 bytes 2 bytes <u>2 bytes</u> 64 bytes

Bitmap 16 bytes <u>16 bytes</u> 192 bytes

GIF: Graphic Interchange Format

- 8-bit pixels, mapping to a table of 256
 24-bit RGB colors.
- A codebook stores recurring sequences.
- Useful for representing images with fewer colors or large areas of color like company logos.

GIF and photos

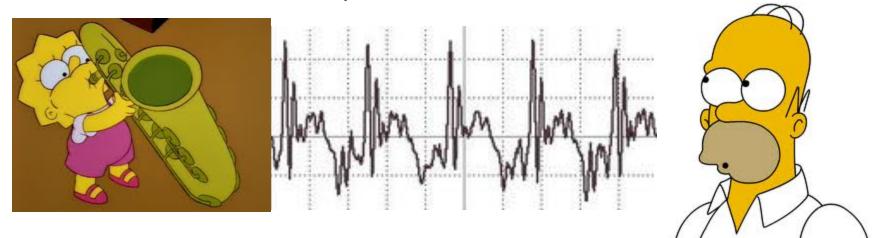
Only 256 colors leads to strange effects

JPEG (JPG): Joint Photographic Experts Group

- A <u>lossy</u> compression technique for photographic images.
 - Perceptual Coding: based on what we can/cannot see.

Higher quality Compression 2.6:1 (images from Wikipedia)

Medium quality Compression 23:1



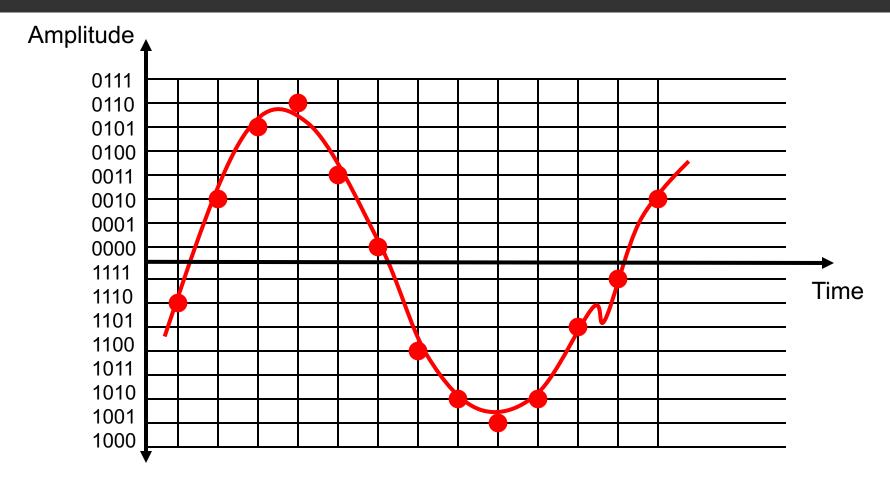
Lowest quality Compression 144:1

Digitizing sound

Sound Is a Pressure Wave

When an instrument is played or a voice speaks, periodic (many times per second) changes occur in air pressure, which we interpret as sound.

Human Sound Perception


- Frequency **range**: about 20 Hz^{*} to 20,000 Hz
- Frequency discrimination drops off at high part of range
- Amplitude (roughly, volume) range: about 10⁹ (huge!)
- Sensitivity to volume (amplitude) drops off at ends of range

* Hz stands for Hertz, meaning cycles per second

Sampling

- Pressure varies continuously-sampling measures how much pressure at fixed intervals
- Accuracy determined by
 - Sampling rate
 - Sample size
- Sampling rate: how many times per second do we measure?
- Sample size: how many bits do we store per sample?

Sampling

1110 0010 0101 0110 0011 0000 1100 1010 1001 1010 1101 1111 0010

When Sampling Is Too Slow

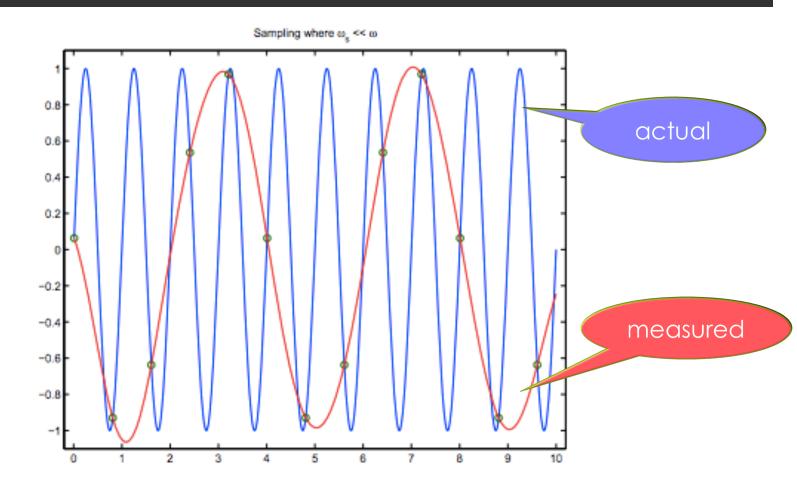


Figure 5.7: Sampling a sinusoid at too slow of a rate. Source: http://www.princeton.edu/~cuff/ele201/kulkarni_text/digitizn.pdf

Samples Must Have Enough Bits

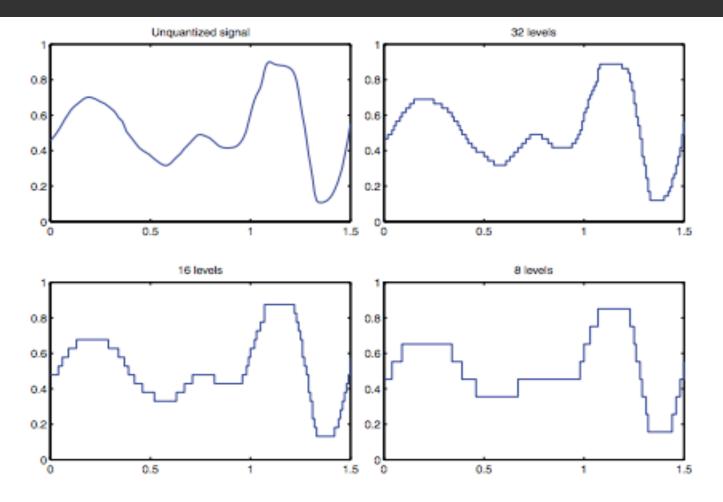


Figure 5.11: Quantized versions of an analog signal. Source: http://www.princeton.edu/~cuff/ele201/kulkarni_text/digitizn.pdf

High-Quality Sampling

sampling rate

Rate: 44,100 samples per second (Hertz – Hz).

sampling theorem: the sampling rate must be at least twice the highest frequency in the sound (humans can hear up to approx. 20,000 Hz.)

sample size

Sample size: 16-bits per sample (so there are 65,536 amplitude levels that can be measured).

Quantization (rounding to integer sample values) introduces noise. Adding one bit cuts the noise in half.

sound file formats

Compressing Sound Files

- codecs (compression/decompression) implement various compression/decompression techniques
- Lossless: WMA Lossless, ALAC, MPEG-4 ALS, ...
- Lossy: MPEG, like JPEG, a family of perceptually-based techniques

MP3

- □ MP3 (MPEG3) is a <u>lossy</u> compression technique.
- Takes advantage of human perception (psychoacoustics)
 - Our hearing is better in mid range frequencies than on the low and high ends.
 - If a loud and soft sound play at about the same time or about the same frequencies, we can't hear the soft sound: this is called *masking*
 - Masking can hide noise introduced by compression.

MP3 Demo

Let Me Call You Sweetheart

<u>http://www-</u> mtl.mit.edu/Courses/6.050/2014/notes/mp3.html

MP3 Compression

Like JPEG, MP3 has various levels of compression:

Bit Rate	Compression Ratio	Quality	
256Kbps	5:1		Supreme (near best)
192Kbps	7:1		Excellent (better)
128Kbps	11:1		(good)
96Kbps	19:1		(fair)
64Kbps	22:1		FM quality (poor)

MP3 also has Variable Bit Rate (VBR) since compression ability can vary at different segments of the digital recording.

image + sound = video

Problem: a torrent of data

Imagine if we used "raw" images and sound for video

- about 5MB of image data per frame, times 30 frames/sec = about 150 MB image data per second
- about 1400 kbps, or 175 KB sound data per second
- 10 minutes of this: about 90.1 Gigabytes

MP4

- MP4 (MPEG4): compression technique for video
- Sophisticated engineering exploits
 redundancy (next frame is likely to resemble this frame)
 perception (what the eye and ear can do)
- Applications: streaming, HDTV broadcast, Digital Cinema, cameras (e.g. GoPro), phones

YouTube, Vimeo, etc.

- YouTube, Vimeo, etc. support many formats, including MP4, AVI (Microsoft), QuickTime (Apple), and Flash (Adobe).
- You can download videos from these sites in your preferred format using tools such as KeepVid
- Uploading and then downloading a video may reduce the quality due to lossy compression.

Summary

Samples

- Pixels are samples of the image in space; resolution and number of bits determine quality
- Audio samples measure the signal in time; sampling rate and number of bits determine quality

Tradeoff between quality and size

- Compression methods exploit
 - Coding redundancy (e.g. Huffman codes)
 - Data redundancy (e.g. run-length coding)
 - Perceptual redundancy (e.g. MP3, JPEG)