
Data Representation and
Compression

Exam 1?

Announcements

¤ The first lab exam is Monday during the lab session.
¤ Sample exam on web site
¤ Practice problems (with soln)are on the web site.
¤ Python tutors will also help

¤ PA6 and OLI Data representation over the weekend

Lingering questions…

¤ Data Structures

¤ Arrays

¤ Linked Lists

¤ Hash Tables

¤ Associative Arrays

Key Point:

¤ Data needs to be stored in physical memory

¤ How we organize data in memory has consequences

¤ In this class, you are not implementing data structures –
you are taking advantage of python’s implementations…

¤ ...but you still need to understand (and make decisions)
about these data structures.

Recall Arrays and Linked Lists

Advantages Disadvantages

Arrays
Constant-time lookup
(search) if you know the
index

Requires a contiguous
block of memory

Linked Lists
Flexible memory usage Linear-time lookup

(search)

Hashing tables are one approach to exploit the
advantages of arrays and linked lists (to improve search
time in dynamic data sets)?

Hashing
• A “hash function” h(key)that maps a key to an array index in 0..k-1.
• To search the array table for that key, look in table[h(key)]

key1

key2
key3

Universe of keys
h(key1) = 0:

h(key2) = 5:

h(key3) = 4:

1:

2:

3:

A hash function h is used to map keys to hash-table (array) slots.
Table is an array bounded in size. The size of the universe for keys
may be larger than the array size. We call the table slots buckets.

Example: Hash function

¤ Suppose we have (key,value) pairs where the key
is a string such as (name, phone number) pairs
and we want to store these key value pairs in an
array.

¤ We could pick the array position where each
string is stored based on the first letter of the string
using this hash function:

def h(str):
return (ord(str[0]) – 65) % 6

8

Note ord(‘A’) = 65

Add Element “Graham”

9

0:

1:

2:

3:

4:

5:

h(“Emma") is 4Emma

Andy

h(”Graham") is also 0
because ord(“G”) is 71.

Graham

In order to add Graham’s information to the table we had to form a
link list for bucket 0.

Requirements for the
Hash Function h(x)

¤Must be fast: O(1)

¤Must distribute items roughly uniformly
throughout the array, so everything doesn’t
end up in the same bucket.

10

What’s A Good Hash Function?

¤ For strings:
¤ Treat the characters in the string like digits in

a base-256 number.
¤ Divide this quantity by the number of

buckets, k.
¤ Take the remainder, which will be an integer

in the range 0..k-1.

11

Fancier Hash Functions

¤ How would you hash an integer i?
¤ Perhaps i % k would work well.

¤ How would you hash a list?
¤ Sum the hashes of the list elements.

¤ How would you hash a floating point number?
¤ Maybe look at its binary representation and treat that

as an integer?

12

Summary of Search Techniques

Technique Setup Cost Search Cost
Linear search 0, since we’re

given the list
O(n)

Binary search O(n log n)
to sort the list

O(log n)

Hash table O(n) to fill the
buckets

O(1)

13

Associative Arrays

¤ Hashing is a method for implementing associative
arrays. Some languages such as Python have
associate arrays (mapping between keys and
values) as a built-in data type.

¤ Examples:
¤ Name in contacts list => Phone number
¤ User name => Password
¤ Product => Price

14

Dictionary Type in Python

>>> cars = {"Mercedes": 55000,

"Bentley": 120000,

"BMW":90000}

>>> cars["Mercedes"]

55000

15

Keys can be of any immutable data type.

Dictionaries are implemented using hashing.

This example maps car brands (keys) to prices (values).

Iteration over a Dictionary
>>> for i in cars:

print(i)

BMW
Mercedes
Bentley

>>> for i in cars.items():
print(i)

("BMW", 90000)
("Mercedes", 55000)

("Bentley", 120000)

>>> for k,v in cars.items():
print(k, ":", v)

BMW : 90000
Mercedes 55000
Bentley : 120000

Think what the loop variables are
bound to in each case.

Note also that there is no notion of
ordering in dictionaries. There is no such
thing as the first element, second element
of a dictionary.

Some Dictionary Operations

¤ d[key] = value -- Set d[key] to value.

¤ del d[key] -- Remove d[key] from d. Raises a an error if key is
not in the map.

¤ key in d -- Return True if d has a key key, else False.

¤ items() -- Return a new view of the dictionary’s items ((key,
value) pairs).

¤ keys() -- Return a new view of the dictionary’s keys.

¤ pop(key[, default]) If key is in the dictionary, remove it and
return its value, else return default. If default is not given and key
is not in the dictionary, an error is raised.

Source: https://docs.python.org/

Left – Node - Right

Representation

¤ We use computers to model i.e. represent, things in the
real world:
¤ Numbers, pictures, music, climate, markets…

¤ Three topics:
¤ Representing numbers
¤ Exploiting redundancy in representation (compression)
¤ Representing images and sound

19

First, what do we mean by
Representation?

20

Representing Data

A B C D E F

Keyboard

�A�

Screen

machine storage

External representation Internal representation External representation

�A�

encode decode
0 1 0 0 0 0 0 1

Digital Data

¤ Inside the digital machine it's all just
¤ binary physical states (high or low voltages, etc.)
¤ which we interpret as bits (1s and 0s)

¤ In turn we interpret these bits as representing data such
as integers, real numbers, text, …

¤ Machine storage is finite and divided into fixed-size
chunks of bits
¤ bytes, usually 8 bits
¤ words, usually 64 or 32 bits
¤ machine storage capacity usually expressed as number of bytes

or words
¤ loosely speaking: “memory size”

Types interpret bits

¤a 32-bit "word" might be
1100 1100 1011 0111 0000 0000 0000 0000

¤what this means depends on the machinery to
interpret it, could be (explore with 0xED)

23

Type Interpretation

“Raw” bits 1100 1100 1011 0111 0000 0000 0000 0000

Floating point
number

6.59339 X 10-41

String (Unicode UTF-
16)

첷

RGB pixel color

Little-endian integer 47052

Fundamental Issue: Information
Capacity

bits

Possible values # possible
values

1 0 1 2
2 00 01 10 11 4
3 000 001 010 011 100 101 110 111 8

4 0000 0001 0010 0011 0100 0101 0110 0111
1000 1001 1010 1011 1100 1101 1110 1111

16

24

21 = 2, 22 = 4, 23 = 8, 24 = 16

Hmmm…could it be?
Yes, k bits can represent 2k different values.

Today

¤ Numerals are not numbers!
¤ place-value representations

¤ Positive and negative integers

¤ Real numbers and floating-point
representations

You should be able to

¤ Count in unsigned binary
0, 1, 10, 11, 100, …

¤ Add in binary and know what overflow is

¤ Determine the sign and magnitude of an integer
represented in two’s complement binary

¤ Determine the two’s complement binary representation
of a positive or negative integer

26

numerals are not numbers!
don’t be drawn like moths to the flame of meaning*:

*Geoffrey Pullum

Numbers: semantics (quantities)
versus syntax (numerals)

Semantics Syntax

What is it? Our idea of quantity How we write our idea of
quantity

What is it good for? Insight Calculation,
communication,
computation

Example II (Roman numeral)
2 (decimal Arabic
numeral)
10 (binary numeral)
– all with the same
semantics!

machines don’t have ideas! only syntax!

Numerals aren’t numbers, but

¤ …to communicate a number (quantity), I have to write
something

¤ I will write numbers (quantities) as ordinary base-10
numerals (or sometimes as words)

place-value syntax of numerals
representing non-negative integers (0, 1, 2, 3, …)

Place-value numerals (base 10)

¤ The numeral we write: 15627

¤ What it means:
7 × 100 + 2 × 101 + 6 × 102 + 5 × 103 + 1 × 104

¤ Problem: electronic circuitry for base-10 arithmetic is slow.

¤ Solution: use place-value numerals, but in base 2–binary
notation

Place-value numerals in general

¤ Choose a number b for the base or radix

¤ Choose list of digits, there must be b of them
¤ base 10 example: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
¤ base 2 example: 0, 1
¤ base 16 example: 0, 1, …, 9, A, B, C, D, E, F

¤ To represent a quantity n in base b
¤ integer divide n by b with remainder r (a digit)
¤ repeat until the quotient is zero
¤ the remainders are the digits in reverse order

Binary place-value example

¤ Base two, digits 0 and 1

¤ To represent “six”:
¤ 6 // 2 = 3 remainder 0

remainder when dividing
by 2 can only be 0 or 1

Binary place-value example

¤ Base two, digits 0 and 1

¤ To represent “six”:
¤ 6 // 2 = 3 remainder 0
¤ 3 // 2 = 1 remainder 1

Binary place-value example

¤ Base two, digits 0 and 1

¤ To represent “six”:
¤ 6 // 2 = 3 remainder 0
¤ 3 // 2 = 1 remainder 1
¤ 1 // 2 = 0 remainder 1

¤ What it means:
0 × 20 + 1 × 21 + 1 × 22 = “six”

35

Binary numeral: 110

Read the remainders
from bottom to top to
get bits from left to right

Information Capacity and Range

¤ Remember: k bits can represent 2k different things

¤ So k-bit binary numerals represent 0…2k-1
¤ For k = 3,

000 001 010 011 100 101 110 111
0 1 2 3 4 5 6 7

Ranges for typical computer “word”
sizes

bits minimum maximum

8 0 28 – 1 (255)

16 0 216 – 1 (65,535)

32 0 232 – 1 (4,294,967,295)

64 0 264 – 1 (18,446,744,073,709,551,615)

binary arithmetic
some familiar operations

38

Counting in binary

Binary numerals
¤ 0
¤ 1
¤ 10
¤ 11
¤ 100
¤ 101
¤ 110
¤ 111
¤ 1000
¤ 1001
¤ 1010
¤ 1011

Decimal equivalents
¤ 0
¤ 1
¤ 2
¤ 3
¤ 4
¤ 5
¤ 6
¤ 7
¤ 8
¤ 9
¤ 10
¤ 11

Addition and Multiplication Tables

+ 0 1

0 0 1

1 1 10

× 0 1

0 0 0

1 0 1

Binary Arithmetic

¤ All the familiar methods work, but with only 1 and 0 for
digits

¤ 1 + 1 = 10, 10 - 1 = 1, 10 + 1 = 11, ...

¤ Example:
1 1

1010
+1010

10100

Notice: we need more
bits for the answer than
we did for the operands.

Overflow: the first difficulty

¤ Machine word only has k bits for some fixed k!

¤ If k is 4, then we have overflow in the following:
1 1

1010
+1010

10100

¤ The machine retains only 0100 (the “least significant”
bits), so (n+n) – n not always equal to n + (n – n)

Modular Arithmetic

¤ Dropping the overflow bit is modular arithmetic

¤ We can carry out any arithmetic operation modulo 2k

for the precision k. The example again for precision 4:

binary decimal
1 0 1 0 = 10

+ 1 0 1 0 = 10
(1) 0 1 0 0 = 20 = 4 mod 16

overflow can be ignored or signaled as an error

negative integers
representing all the integers…

44

Representing a sign +/-

¤ A natural idea: reserve one of the bits to stand for a sign.

¤ E.g., 0 could stand for + and 1 could stand for –
¤ unsigned “ten” is 1010
¤ so “negative ten” would be 11010

¤ But someone had a cleverer idea…
¤ first, we’d like to avoid “two zeroes”: +0 and -0
¤ second, we’d like the same machinery to work for addition

and subtraction

45

Two’s Complement Negative
Numbers

¤ A clever approach based on modular arithmetic

¤ Remember, with k bits, we do arithmetic mod 2k

¤ We define negative numbers as additive inverse: -x is the number y
such that x + y = 0 mod 2k – this is the two’s complement of x

¤ Example with 4 bits: if 1 is 0001, what is -1?

carry bits 1 11 111 1111
0001 0001 0001 0001 0001 0001

+ ???? +???1 +??11 +?111 +1111 +1111
---- ---- ---- ---- ---- ----
0000 ???0 ??00 ?000 0000 10000

modular arithmetic
discards overflow

representation for -1

Two�s complement property

¤ When you add a number to its two�s complement
(modulo 2k), you always get 0.

¤ That’s why we use it to represent negative numbers!
¤ Remember, you�re using base 2 arithmetic.

¤ Example (using 3 bits):

011 (+3 in decimal)
+ 101 (-3 in decimal)

(1)000 0

modular arithmetic
discards

All two’s complement integers using 3
bits, arithmetic mod 8

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
positive
integers
and zero

negative
integers

Bit
pattern

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Decimal
value

0
+ 1
+ 2
+ 3
- 4
- 3
- 2
- 1

Adding + n to – n gives 0
For example: 011 + 101 = 000

Great! but how do we “read” two’s
complement integers?

¤ Sign: look at leftmost bit
¤ 1 means negative, 0 means positive

e.g. with four bits 1010 represents a negative number

¤ Magnitude: if negative, compute the two�s complement
¤ flip each bit (one’s complement)

e.g. flip 1010 to get 0101
¤ then add 1

e.g. 0101 + 0001 = 0110, or
0 × 20 + 1 × 21 + 1 × 22 + 0 × 23 = 6

¤ voilà! 1010 represents negative six

Two’s complement is an approach
for representing negative integers

¤ Define negative by addition: -x is value added to x to get 0

¤ Process:
1. Write out the number in binary
2. Invert the bits
3. Add 1

¤ From and To two’s complement use an identical process

¤ How does this work? Overflow…

50

Another Example

What value is this ?-bit signed integer?
1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

+ 0 0 0 0 0 0 0 1

0 0 1 1 0 1 0 0

Flip each bit

So 11001100 represents -52

sign bit

Add one

25 24 22
32+16 + 4 = 52

two’s complement

so we can “decode” binary
signed integers, now for

encoding signed integers

Signed Integers: encoding negative values

Example: How do you store -52 in 8 bits?
Start by encoding +52:

One way to do it: by repeated integer division
52 // 2 = 26 r 0
26 // 2 = 13 r 0
13 // 2 = 6 r 1
6 // 2 = 3 r 0
3 // 2 = 1 r 1
1 // 2 = 0 r 1

Another way: find the powers of two that add up to 52:
52 = 32 + 16 + 4

27 26 25 24 23 22 21 20
0 0 1 1 0 1 0 0

00110100

Signed Integers: encoding negative values

Example continued: How do you store -52 in 8 bits?

We’ve encoded +52 like this:
52 = 32 + 16 + 4

27 26 25 24 23 22 21 20
0 0 1 1 0 1 0 0

Flip each bit (one’s complement):
1 1 0 0 1 0 1 1

Add 00000001, modulo 28:
1 1 0 0 1 1 0 0 = -52

The same steps convert positive to negative
and vice-versa! (try it and see)

Range of Two’s Complement
Representations
(for k bits)

0…0
00…01

01…11
10…0

11…1
positive
integers
and zero

negative
integers

Bit pattern Decimal
value

00…00 0
00…01 +1
…
01…11 +2k-1-1
10…00 -2k-1

…
11…11 -1

Range Examples
bits minimum value maximum value

8 –27 = –128 27 – 1 = +127

10000000 01111111

16 –215 = –32,768 215 – 1 = +32,767

32 –231 231 – 1

= –2,147,483,648 = +2,147,483,647

64 –263 263 – 1

= -9,223,372,036,854,775,808 = +9,223,372,036,854,775,807

From whole numbers to
rational numbers

57

Real Numbers in the Machine?

¤ Real numbers measure continuous quantities; can we represent
them exactly in the machine?

¤ Not possible with a fixed number of bits

¤ Can only approximate by rational numbers using floating point
representations

¤ e.g. π ≈ 3.14159

58

Floating point is based on scientific
notation

Age of the Universe in years:
+ 1.37 × 10 10

sign significand exponent
or mantissa

Idea: use same method, but with a binary number for
each part (and remember, a fixed number of bits)

Binary and fractions

¤ Decimal 5.75 can be represented in binary as follows,
because .75 = ½ + ¼ = 2-1 + 2-2

5.75 = 5 + 0.75
= 101 + 0.11 (i.e. 2-1 + 2-2)
= 101.11 = 1.0111 × 1010

In binary floating point the mantissa is a binary fraction,
exponent is a binary integer, and the base of the exponent is
always 2
101.11 has mantissa 1.0111 and exponent 10

decimal binary

Some Floating Point Anomalies

¤ Rounding error
¤ remember, floating point with a fixed number of digits is an

approximation, no matter what base is used!
¤ in addition, there is no finite base two representation for 1/10

¤ Resolution

¤ Accumulation of errors: repeated operations may get
further and further from the “true” value

61

Rounding in any base

¤ Floating point works with a finite fixed number of digits

¤ No matter what the base, some numbers can only be
approximated
¤ π, e, other irrationals
¤ but also rationals needing more digits than we have in a

machine word

62

Rounding in binary

63

>>> x = 1/10
>>> x
0.1
>>> y = 2/10
>>> y
0.2
>>> x + y
0.30000000000000004
>>> from decimal import Decimal
>>> Decimal(x)
Decimal('0.1000000000000000055511151231257827021181583404541015625')
>>> Decimal(y)
Decimal('0.200000000000000011102230246251565404236316680908203125')
>>> Decimal(x+y)
Decimal('0.3000000000000000444089209850062616169452667236328125')
>>>

python prints a rounded value

the actual value looks like
this (in decimal)!

Ack!
Whyyyy?

Why is 1/10 not exactly .1?

Let’s compute 1/10 using binary long division:
.000110011…

1010 1.000000000…
1010

1100
1010

10000
1010

1100
1010

10…

64

we get a repeating series
of digits 11001100…

same

Resolution

¤ Tiny example: suppose we use a binary floating point notation like
this (4 bits):
d1.d2d3 × 2e , where -1 ≤ e ≤ 2 and d1 = 1 unless e=0

¤ The 16 numbers we can represent:

¤ Representable values get sparser as we go to bigger and bigger
numbers!

65

Image source: “What Every Computer Scientist Should Know About Floating-Point
Arithmetic”, by David Goldberg. Computing Surveys, 1991

Floating point: the bottom line

For serious work like simulating the weather or the economy,
hire an expert! (or be an expert)

66

You should be able to

¤ Count in unsigned binary
0, 1, 10, 11, 100, …

¤ Add in binary and know what overflow is

¤ Determine the sign and magnitude of an integer represented in two’s
complement binary

¤ Determine the two’s complement binary representation of a positive or
negative integer

67

Some Helpful Python functions

>>> bin(10)

'0b1010'

>>> hex(10)

'0xa'

>>> from decimal import Decimal

>>> Decimal(.2)

Decimal('0.2000000000000000111022302462515654042363
16680908203125')

68

