Recursion: Introduction

Announcements

- Deadlines
- Exam on Thursday: Units 1 - 5 (inclusive)
- PA 4 due tonight
- OLI Recursion over the weekend
- Monday: PA5 is due.

Today

- Review of Big-O
- Recursion:
- Introduction to recursion
- What it is
- Recursion and the stack
- Recursion and iteration
- Examples of simple recursive functions
- Geometric recursion: fractals

Big-O Review

Asymptotic Analysis

\square Beyond number of operations
\square Goal: understanding behavior of program over the long run, with increasingly large inputs

- We are not concerned with constants factors:
- How many iterations?
- Not operations in each iteration
\square Gives a useful approximation, suppresses details
- Worst-case

Order of Complexity

- We express this as the (time) order of complexity
\square Normally expressed using Big-O notation.
- Big-0 is ignores constants, focuses on highest power of \mathbf{n}

Number of iterations

- n
- $3 n+3$
- $2 n+8$

Order of Complexity
$O(n)$
$O(n)$
$O(n)$

Linear Search: Worst Case

\# let $\mathrm{n}=$ the length of list.def search(list, key):
index $=0$ 1
while index < len(list): $n+1$
if list[index] == key: n
return index
index $=$ index +1n
return None 1
Total: $3 n+3$

Linear Search: Worst Case Simplified

\# let $\mathrm{n}=$ the length of list. def search(list, key) :

$$
\text { index }=0
$$

while index < len(list): n iterations
if list[index] == key:
return index
index $=$ index +1
return None

O(n) ("Linear")

$\mathrm{O}(\mathrm{n})$

O(1) ("Constant-Time")

Number of
Operations

For a constant-time algorithm, if you double the amount of data, the amount of work you do stays the same.

$$
4=0(1)
$$

$1=0(1)$
n
(amount of data)

Insertion Sort: worst case

```
# let n = the length of list.
def isort(list):
    i = 1
    while i != len(list): #n-1 iterations
        move_left(list,i)
        i = i + 1
    return list
```

What is the cost of move_left?

Insertion Sort: cost of move left

```
# let n = the length of list.
def move_left(a, i):
    m=a.pop(i) n n iterations 
    a.insert(j + 1, x) n iterations
```

Total cost (at most): $n+i+n$
But what is i? To find out, look at isort, which calls move_left, supplying a value for i

Insertion Sort: worst case

```
# let n = the length of list.
```

def isort(list):
$i=1$
while $i \quad!=$ len(list): \#n-1 iterations
move left(list,i) \#i goes from 1 to $n-1$
$i=i+1$
return list
Total cost: cost of move_left as i goes from 1 to $n-1$

Examining the cost

```
def isort(list)
    i = 1
    while i != len(list):
    move_left(list,i)
    i = i + 1
    return list
```


Examining the cost

```
def isort(list):
    i = 1
    while i != len(list): n-1
    move_left(list,i)
    i = i}+
    return list
```


Examining the cost

```
def isort(list):
    i = 1
    while i != len(list): n-1
        move_left(list,i)
        pop
        while loop
        insert
    i = i + 1
    return list
```


Examining the cost

```
def isort(list):
    i = 1
    while i != len(list): n-1
        move_left(list,i)
    i = i + 1
    return list
```


Examining the cost

```
def isort(list)
    i = 1
    while i != len(list): n-1
        move_left(list,i)
        pop............................. n
            while loop
            insert
                n
    i = i + 1
    return list
```


Examining the cost

```
def isort(list):
    i = 1
    while i != len(list): n-1
        move_left(list,i)
        pop & insert ......... n | n
        while loop
    i = i + 1
    return list
```


Examining the cost

```
def isort(list):
    i = 1
    while i != len(list): n-1
        move_left(list,i)
    i = i + 1
    return list
```


Examining the cost

```
def isort(list)
    i = 1
    while i != len(list): n-1
        move_left(list,i)
    i = i + 1
    retunn list
```


Examining the cost

```
def isort(list)
    i = 1
    while i != len(list): n-1
        move_left(list,i)}\begin{array}{c}{\mathrm{ pop & insert .........}}\\{\mathrm{ while loop }}\end{array}{\begin{array}{l}{2\textrm{n}}\\{1+2+}
    i = i + 1
    return list
```


Examining the cost

```
def isort(list)
    i = 1
    while i != len(list): n-1
        move_left(list,i)
    i = i + 1
    retum list
```


How can we express this?

```
def isort(list)
    i = 1
    while i != len(list): n-1
        move_left(list,i)
    i = i + 1
    retum list
```


How can we express this?

```
def isort(list):
    i = 1
    while i != len(list): n-1
        move_left(list,i)
        i = i + 1
    return list
1+2+3\ldotsn-1
```


Test for $\mathrm{n}=7$

$1+2+3 \ldots n-1$

Test for $n=7$.

$1+2+3+4+5+6$
 $1+2+3 \ldots n-1$

$$
\begin{aligned}
& \text { Test for } n=7 \text {. } \\
& \begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 1+2+3+4+5+6 \\
& 1+2+3 \ldots-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Test for } n=7 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 1+2+3 \ldots n-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Test for } n=7 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) * (7) / } 2 \text { blue circles } \\
& (n-1) \text { * }(n) / 2 \text { blue circles } \\
& 1+2+3+4+5+6 \\
& 1+2+3 \ldots n-1
\end{aligned}
$$

Our equation ...

	(6) * (7) / 2 blue cir $(\mathrm{n}-1)$ * $(\mathrm{n}) / 2$ blue
$(n-1)$	$* \Omega / 2$

$$
1+2+3 \ldots n-1
$$

Our equation ...

$$
\begin{aligned}
& (n-1) * n / 2 \\
& 1+2+3 \ldots n-1
\end{aligned}
$$

How can we express this?

```
def isort(list):
    i = 1
    while i != len(list): n-1
        move_left(list,i)
                pop & insert ........ 2n
                        while loop
        (n-1)*n/2
    1+2+3...n-1
```


How can we express this?

Combine to calculate

```
def isort(list)
    i = 1
    while i != len(list): n-1
        move_left(list,i)
        pop & insert ......... 2n +
        while loop
                        (n-1)*n/2
    i = i + 1
    return list
```


How can we express this?

```
def isort(list)
    i = 1
    while i != len(list): n-1
        move_left(list,i)
    i = i + 1
    retum list
```


How can we express this?

```
def isort(list):
    i = 1
    while i != len(list): n-1
        move_left(list,i) [2n+(n-1)*n/2
    i = i + 1
    return list
```


How can we express this?

```
def isort(list):
    i = 1
    while i != len(list): n-1
        move_left(list,i) }[(2n+(n-1)*n/2
    i = i + 1
    return list
```


Total number of operations

```
def isort(list):
    i = 1
    while i != len(list): (n-1)*(2n+(n-1)*n/2)
        move_left(list,i)
    i = i + 1
    return list
```


Generalizing...

$$
(n-1) *(2 n+(n-1) * n / 2)
$$

$\square=2 n^{2}-2 n+\left(n^{2}-n\right) / 2$
$\square=\left(5 n^{2}-5 n\right) / 2$
$\square=(5 / 2) n^{2}-(5 / 2) n$

Highest order term? ...

$$
(5 / 2) n^{2}-(5 / 2) n
$$

Order of Complexity

Number of operations n^{2}
$(5 / 2) n^{2}-(1 / 2) n$
$2 n^{2}+7$

Order of Complexity
 $\mathrm{O}\left(\mathrm{n}^{2}\right)$
 $O\left(n^{2}\right)$
 $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Usually doesn't matter what the constants are...
we are only concerned about the highest power of n.
$f(n)$ is $\mathbf{O}(g(n))$ means $f(n)<g(n) \cdot k$ for some positive k

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ ("Quadratic")

$\mathrm{O}\left(\mathrm{n}^{2}\right)$

Two Examples

- Linear Sort
 O(n)
 linear 미sertion Sort $\mathrm{O}\left(\mathrm{n}^{2}\right)$
 quadratic

Big O

- O(1)
- O(logn)
- $O(n)$
- $O(n \log n)$
- $O\left(n^{2}\right)$
- $O\left(n^{3}\right)$
- $O\left(2^{n}\right)$
constant
logarithmic
linear
log linear
quadratic
cubic
exponential

How work increases

Input Size	$\mathbf{O}(\mathrm{n})$	$\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$	$\mathbf{O}\left(\mathbf{n}^{\mathbf{3}}\right)$	$\mathbf{O}\left(\mathbf{2}^{\mathbf{n}}\right)$
2	2	4	8	4
4	4	16	64	16
8	8	64	512	256
16	16	256	4096	65536
32	32	1024	32768	4294967296

Recursion

Recursion

\square A recursive function is one that calls itself.
\square def i_am_recursive(x): maybe do some work if there is more work to do: i_am_recursive(next(x)) return the desired result

- Infinite loop? Not necessarily, not if next(x) needs less work than x .

Recursive Definitions

- Every recursive function definition includes two parts:
- Base case(s) (non-recursive)

One or more simple cases that can be done directly or immediately

- Recursive case(s)

One or more cases that require solving "simpler" version(s) of the original problem.

- By "simpler", we mean "smaller" or "shorter" or "closer to the base case".

Example: Factorial

- $\mathrm{n}!=\mathrm{n} \times(\mathrm{n}-1) \times(\mathrm{n}-2) \times \ldots \times 1$

$$
\begin{array}{llr}
2! & 2 \times 1 & 9! \\
3! & =362,880 \\
4! & =4 \times 2 \times 1 & 10! \\
4!3,628,800 \\
4 \times 3 \times 1 & 10! & =10 \times 9!
\end{array}
$$

\square alternatively:

$$
\begin{aligned}
& 0!=1 \\
& n!=n \times(n-1)!
\end{aligned}
$$

(Recursive case)
(Base case)

$$
\text { So } 4!=4 \times 3!\rightarrow 3!=3 \times 2!\rightarrow 2!=2 \times 1!\rightarrow
$$

$$
1!=1 \times 0!\rightarrow 0!=1
$$

Recursion conceptually

$4!=4(3!)$

$3!=3(2!)$
$2!=2(1!)$
$1!=1$ (0!)

Base case
make smaller instances
of the same problem

Recursion conceptually

$4!=4(3!)$

$3!=3(2!)$
$2!=2(1!)$
$1!=1(0!)=1(1)=1$

Compute the base case
make smaller instances
of the same problem

Recursion conceptually

$4!=4(3!)$

$3!=3(2!)$

$$
\begin{gathered}
2!=2(1!) \\
1!=1(0!)=1(1)=1
\end{gathered}
$$

Compute the base case
build up
the result

Recursion conceptually

$$
\begin{aligned}
& 4!=4(3!) \\
& 3!=3(2!) \\
& 2!=2(1!) \quad=2 \\
& 1!=1(0!)=1(1)=1
\end{aligned}
$$

Compute the base case
build up
the result

Recursion conceptually

$4!=4(3!)$

$$
=24
$$

$$
3!=3(2!)
$$

$$
=6
$$

$$
2!=2(1!)
$$

$$
1!=1(0!)=1(1)=1
$$

Compute the base case
build up
make smaller instances
of the same problem

Recipe for Writing Recursive Functions
 (by Dave Feinberg)

1. Write if. (Why?)

There must be at least 2 cases: base and recursive
2. Handle simplest case(s).

No recursive call needed (base case).
3. Write recursive calls(s).

Input is slightly simpler to get closer to base case.
4. Assume the recursive call works!

Ask yourself: What does it do?
Ask yourself: How does it help?

Recursive Factorial in Python

\# Assumes $\mathrm{n}>=0$ def factorial(n):

$$
\begin{aligned}
& 0!=1 \\
& n!=n \times(n-1)!
\end{aligned}
$$

(Base case)
(Recursive case)
if $\mathrm{n}==0$: \# base case return 1
else: \# recursive case
result $=$ factorial(n-1)
return n * result

S n=4 factorial(4)? = 4 * factorial(3)

Sn=4 factorial(4)? = $4 *$ factorial(3)

Sn=4 factorial(4)? = 4 * factorial(3)
Tn=3 factorial(3)? = 3 * factorial(2)

Sn=4 factorial(4)? = 4 * factorial(3)

Sn=4 factorial(4)? = 4 * factorial(3)
T n=3 factorial(3)? = $3 *$ factorial(2)

A $\mathrm{n}=2$ factorial(2)? $=2$ * factorial(1)

Sn=4 factorial(4)? = 4 * factorial(3)

Sn=4 factorial(4)? = 4 * factorial(3)

Recursive vs. Iterative Solutions

\square For every recursive function, calls itself there is an equivalent iterative solution.

- For every iterative function, there is an equivalent recursive solution.
- But some problems are easier to solve one way than the other way.
- And be aware that most recursive programs need space for the stack, behind the scenes

Factorial Function (Iterative)

```
def factorial(n):
    result = 1 # initialize accumulator var
    for i in range(1, n+1):
        result = result * i
    return result
```


Versus (Recursive):

```
def factorial(n):
    if n == 0: # base case
    return 1
    else: # recursive case
    return n * factorial(n-1)
```


A Strategy for Recursive Problem Solving (hat tip to Dave Evans)

-Think of the smallest size of the problem and write down the solution (base case)
\square Be optimistic. Assume you magically have a working function to solve any size. How could you use it on a smaller size and use the answer to solve a bigger size? (recursive case)

- Combine the base case and the recursive case

Recursion on Lists

Do we know how to use iteration to sum the elements in a list?

Recursion on Lists

\square First we need a way of getting a smaller input from a larger one:

- Forming a sub-list of a list:

```
>>> a = [1, 11, 111, 1111, 11111, 111111]
>>> a[1:]
                                the "tail" of list a
[11, 111, 1111, 11111, 111111]
>>> a[2:]
[111, 1111, 11111, 111111]
>>> a[3:]
[1111, 11111, 111111]
>>> a[3:5]
[1111, 11111]
```


Recursive sum of a list

def sumlist(items):
 if

What is the smallest size list?

Recursive sum of a list

def sumlist(items):
if items == []:

The smallest size list is the empty list.

What is the sum of an empty list?

Recursive sum of a list

def sumlist(items):

if items == []:
return $0 \rightarrow$ Base case:
The sum of an empty list is 0 .

Recursive sum of a list

def sumlist(items):

if items == []:
return 0
else:
Recursive case:
the list is not empty

Recursive sum of a list

def sumlist(items):
if items == []:
return 0
else:

What is a simpler/smaller case?

Recursive sum of a list

def sumlist(items):

if items == []:
return 0
else:
... sumlist($\underbrace{\text { items[1:]) ... }}$
"tail" of list
What if we already know the sum of the list's tail?

Recursive sum of a lis \dagger

def sumlist(items):
if items == []:
return 0
else:
return items[0] + sumlist(items[1:])
What if we already know
the sum of the list's tail?

We can just add in the list's first element!

Tracing sumlist

```
def sumlist(items):
    if items== []:
        return 0
    else:
        return items[0] + sumlist(items[1:])
```

>>> sumlist([2,5,7])
sumlist([2,5,7]) $=2+$ sumlist([5, 7])
$5 \frac{\text { sumlist([7]) }}{7+\text { sumlist([]) }}$

After reaching the base case, the final result is built up by the computer by adding $0+7+5+2$.

List Recursion: exercise

- Let's create a recursive function rev (items)
- Input: a list of items
\square Output: another list, with all the same items, but in reverse order
- Remember: it's usually sensible to break the list down into its head (first element) and its tail (all the rest). The tail is a smaller list, and so "closer" to the base case.
- Soooo... (picture on next slide)

Reversing a list: recursive case

\%

see file rev list.py

Multiple Recursive Calls

\square So far we've used just one recursive call to build up our answer

- The real conceptual power of recursion happens when we need more than one!
- Example: Fibonacci numbers

Fibonacci Numbers

Fibonacci Numbers in Nature

- $0,1,1,2,3,5,8,13,21,34,55,89,144,233$, etc.
- Number of branches on a tree, petals on a flower, spirals on a pineapple.
- Vi Hart's video on Fibonacci numbers (http://www.youtube.com/watch? $\mathrm{v}=\mathrm{ahXI}$ MUkSXXO)

Recursive Fibonacci

- Let fib $(\mathrm{n})=$ the nth Fibonacci number, $\mathrm{n} \geq 0$

$$
\begin{array}{lll}
- & \text { fib }(0)=0 & \text { (base case) } \\
- & \text { fib(1) }=1 & \text { (base case) } \\
- & \text { fib }(n)=\text { fib }(n-1)+\text { fib }(n-2), n>1
\end{array}
$$

def fib(n):
if $\mathrm{n}=0$ or $\mathrm{n}==1$: return n
else:
return fib($n-1$) $+\mathrm{fib}(\mathrm{n}-2)$

Recursive Call Tree

Recursive Call Tree

Iterative Fibonacci

def fib(n):
$\mathrm{x}=0$
next_x $=1$
for i in range(1,n+1):
old_x $=x$
$x=n e x t _x$
next_x $=$ old_x $+x$
return x
sequence:
0

Simultaneous Assignment

Assign values to multiple variables in a single statement:

$$
\begin{aligned}
& \text { sum, diff }=X+Y, X-Y \\
& X, Y=Y, X
\end{aligned}
$$

Iterative Fibonacci

def fib(n):

$$
x=0
$$

next_x $=1$
for i in range(1,n+1):
x, next_x $=$ next_x, $x+n e x t _x$
return x

Geometric Recursion (Fractals)

- A recursive operation performed on successively smaller regions.

http://fusionanomaly.net/recursion.jpg

Sierpinski's
Triangle

Sierpinski's Triangle

Sierpinski's Carpet

(the next slide shows an animation that could give some people headaches)

Mandelbrot set

Source: Clint Sprott, htto://sprott_phvsics.wisc.edu/fractals/animated/

Fancier fractals

Next Lecture

image: Matt Roberts, http://people.bath.ac.uk/mir20/blogposts/bst_close_up.php

