Recursion: Introduction

Announcements

Deadlines

- Exam on Thursday: Units 1 5 (inclusive)
- PA 4 due tonight
- OLI Recursion over the weekend
- Monday: PA5 is due.

Today

Review of Big-O

Recursion:

- Introduction to recursion
- What it is
- Recursion and the stack
- Recursion and iteration
- Examples of simple recursive functions
- Geometric recursion: fractals

Big-O Review

Asymptotic Analysis

- Beyond number of operations
- Goal: understanding behavior of program over the long run, with increasingly large inputs
- We are not concerned with constants factors:
 - How many iterations?
 - Not operations in each iteration
- Gives a useful approximation, suppresses details
- Worst-case

Order of Complexity

- We express this as the (time) order of complexity
- Normally expressed using Big-O notation.
- Big-0 is ignores constants, focuses on highest power of n

Number of iterations	Order of Complexity
🗖 n	O(n)
□ 3n+3	O(n)
2n+8	O(n)

Linear Search: Worst Case

```
# let n = the length of list.
def search(list, key):
  index = 0
                                          1
 while index < len(list):
                                          n+1
     if list[index] == key:
                                          n
          return index
     index = index + 1
                                          n
                                          1
  return None
                                          3n+3
                                Total:
```

Linear Search: Worst Case Simplified

O(n) ("Linear")

O(n)

O(1) ("Constant-Time")

Insertion Sort: worst case

```
# let n = the length of list.
def isort(list):
    i = 1
    while i != len(list): #n-1 iterations
        move_left(list,i)
        i = i + 1
    return list
```

What is the cost of move_left?

Insertion Sort: cost of move left

Total cost (at most): n + i + n

But what is i? To find out, look at isort, which calls move_left, supplying a value for i

Insertion Sort: worst case

```
# let n = the length of list.
def isort(list):
    i = 1
    while i != len(list): #n-1 iterations
        move_left(list,i) #i goes from 1 to n-1
        i = i + 1
    return list
```

Total cost: cost of move left as i goes from 1 to n-1

```
def isort(list):
    i = 1
    while i != len(list):
        move_left(list,i)
        i = i + 1
    return list
```

```
def isort(list):
    i = 1
    while i != len(list): n-1
        move_left(list,i)
        i = i + 1
    return list
```

```
def isort(list):
    i = 1
    while i != len(list): n-1
        move_left(list,i)
            pop
        while loop
        insert
        i = i + 1
    return list
```


How can we express this?

```
def isort(list):
    i = 1
    while i != len(list): n-1
        move_left(list,i)
            pop & insert......
            vhile loop
            i = i + 1
            return list
```

How can we express this?

Test for n = 7

$1 + 2 + 3 \dots - 1$

1+2+3+4+5+6

1+2+3...n-1

1+2+3...n-1

1+2+3...n-1

(6) * (7) / 2 blue circles (n-1) * (n) / 2 blue circles

1+2+3+4+5+61+2+3..n-1

Our equation ...

(6) * (7) / 2 blue circles (n-1) * (n) / 2 blue circles

(n-1) *n/2 1+2+3...n-1

Our equation ...

(n-1) *n/2 1+2+3...n-1

How can we express this?

How can we express this?

Combine to calculate

How can we express this?

```
def isort(list):
    i = 1
    while i != len(list): n-1
        move_left(list,i)
        pop & insert & while 2n + (n-1)*n/2
        i = i + 1
    return list
```

How can we express this?

i = i + 1return list

How can we express this?

i = i + 1return list

Total number of operations

```
def isort(list):
    i = 1
    while i != len(list): (n-1) * (2n + (n-1)*n/2)
        move_left(list,i)
```

i = i + 1return list

Generalizing...

(n-1) * (2n + (n-1)*n/2)

 $\Box = 2n^2 - 2n + (n^2 - n) / 2$

 $\Box = (5n^2 - 5n) / 2$

 $\Box = (5/2)n^2 - (5/2)n$

Highest order term? ...

$(5/2)n^2 - (5/2)n$

Order of Complexity

Number of operations	Order of Complexity		
n ²	O(n ²)		
(5/2)n ² - (1/2)n	O(n ²)		
2n ² + 7	O(n ²)		

Usually doesn't matter what the constants are... we are only concerned about the highest power of n.

f(n) is O(g(n)) means
f(n) < g(n) • k for some
positive k</pre>

O(n²) ("Quadratic")

O(n²)

Two Examples

Linear Sort O(n) linear Insertion Sort O(n²) quadratic

Big O

How work increases

Input Size	O(n)	O(n²)	O(n ³)	O(2 ⁿ)
2	2	4	8	4
4	4	16	64	16
8	8	64	512	256
16	16	256	4096	65536
32	32	1024	32768	4294967296

Recursion

THE LOOPLESS LOOP

Recursion

A recursive function is one that calls itself.

```
def i_am_recursive(x):
    maybe do some work
    if there is more work to do:
        i_am_recursive(next(x))
        return the desired result
```

Infinite loop? Not necessarily, not if next(x) needs less work than x.

Recursive Definitions

Every recursive function definition includes two parts:

- Base case(s) (non-recursive)
 One or more simple cases that can be done directly or immediately
- Recursive case(s)

One or more cases that require solving "simpler" version(s) of the original problem.

By "simpler", we mean "smaller" or "shorter" or "closer to the base case".

Example: Factorial

• $n! = n \times (n-1) \times (n-2) \times \dots \times 1$ $2! = 2 \times 1$ $3! = 3 \times 2 \times 1$ $4! = 4 \times 3 \times 2 \times 1$ 10! = 3,628,800 $10! = 10 \times 9!$

■ alternatively: (Recursive case) 0! = 1 (Base case) $n! = n \times (n-1)!$ So $4! = 4 \times 3! \Rightarrow 3! = 3 \times 2! \Rightarrow 2! = 2 \times 1! \Rightarrow$ $1! = 1 \times 0! \Rightarrow 0! = 1$

make smaller instances of the same problem

$$4! = 4(3!)$$

$$3! = 3(2!)$$

$$2! = 2(1!)$$

$$1! = 1 (0!) = 1(1) = 1$$

make smaller instances of the same problem

$$4! = 4(3!)$$

$$3! = 3(2!)$$

$$2! = 2(1!) = 2$$

$$1! = 1 (0!) = 1(1) = 1$$
Compute the base case
make smaller instances
of the same problem
build up
the result

Recipe for Writing Recursive Functions (by Dave Feinberg)

1. Write if. (Why?)

There must be at least 2 cases: base and recursive

2. Handle simplest case(s).

No recursive call needed (base case).

3. Write recursive calls(s).

Input is slightly simpler to get closer to base case.

4. Assume the recursive call works!

Ask yourself: What does it do? Ask yourself: How does it help?

Recursive Factorial in Python

# Assumes $n \ge 0$	0! = 1	(Base case)		
<pre>def factorial(n):</pre>	n! = n × (n-1)!	(Recursive case)		
<pre>if n == 0: # base case</pre>				
return 1				
else:	<pre># recursive case</pre>			
result = f	actorial(n-1)			
return n *	result			

$$\begin{array}{l} S \\ n=4 \end{array} \quad factorial(4)? = 4 * factorial(3) \\ T \\ n=3 \end{array} \quad factorial(3)? = 3 * factorial(2) \\ A \\ C \\ K \end{array}$$

$$S_{n=4} = factorial(4)? = 4 * factorial(3)$$

$$T_{n=3} = factorial(3)? = 3 * factorial(2)$$

$$A_{n=2} = factorial(2)?$$

$$K = K$$

$$S = 4 \quad \text{factorial}(4)? = 4 * \text{factorial}(3)$$

$$T = 3 \quad \text{factorial}(3) = 4 * 2 = 6$$

$$A = 4 \quad \text{factorial}(3) = 4 * 2 = 6$$

$$K = 4 \quad \text{factorial}(3)$$

Recursive vs. Iterative Solutions

For every recursive function,

there is an equivalent iterative solution.

calls itself

- For every iterative function, for loop, while loop there is an equivalent recursive solution.
- But some problems are easier to solve one way than the other way.
- And be aware that most recursive programs need space for the stack, behind the scenes

Factorial Function (Iterative)

```
def factorial(n):
    result = 1  # initialize accumulator var
    for i in range(1, n+1):
        result = result * i
    return result
```

Versus (Recursive):

A Strategy for Recursive Problem Solving (hat tip to Dave Evans)

- Think of the smallest size of the problem and write down the solution (base case)
- Be optimistic. Assume you magically have a working function to solve any size. How could you use it on a smaller size and use the answer to solve a bigger size? (recursive case)
- Combine the base case and the recursive case

Recursion on Lists

Do we know how to use iteration to sum the elements in a list?

Recursion on Lists

First we need a way of getting a smaller input from a larger one:

Forming a sub-list of a list:

```
>>> a = [1, 11, 111, 1111, 11111, 11111]
>>> a[1:]
the "toil" of list a
[11, 111, 1111, 11111, 11111]
>>> a[2:]
[111, 1111, 11111, 11111]
>>> a[3:]
[1111, 11111, 11111]
>>> a[3:5]
[1111, 11111]
```

def sumlist(items):

if :

What is the smallest size list?

def sumlist(items):

if items == []:

The smallest size list is the empty list.

What is the sum of an empty list?

def sumlist(items):

if items == []:

return 0

Base case: The sum of an empty list is 0.

def sumlist(items):

if items == []:

return 0

else: Recursive case: the list is not empty

def sumlist(items):

if items == []:

return 0

else:

def sumlist(items):

if items == []:

return 0

else:

def sumlist(items):

```
if items == []:
    return 0
```

else:

```
return items[0] + sumlist(items[1:])
```

What if **we already know** the sum of the list's tail?

We can just add in the list's first element!

Tracing sumlist

def sumlist(items):
 if items== []:
 return 0
 else:
 return items[0] + sumlist(items[1:])

>>> sumlist([2,5,7])
sumlist([2,5,7]) = 2 + sumlist([5,7])
5 + sumlist([7])
7 + sumlist([])
0

After reaching the base case, the final result is built up by the computer by adding 0+7+5+2.

List Recursion: exercise

- Let's create a recursive function **rev(items)**
- **Input:** a list of items
- Output: another list, with all the same items, but in reverse order
- Remember: it's usually sensible to break the list down into its *head* (first element) and its *tail* (all the rest). The tail is a smaller list, and so "closer" to the base case.

83

Soooo... (picture on next slide)

Reversing a list: recursive case

Multiple Recursive Calls

- So far we've used just one recursive call to build up our answer
- The real conceptual power of recursion happens when we need more than one!
- Example: Fibonacci numbers

Fibonacci Numbers

A sequence of numbers:

. . .

3

Fibonacci Numbers in Nature

- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, etc.
- Number of branches on a tree, petals on a flower, spirals on a pineapple.
- Vi Hart's video on Fibonacci numbers (http://www.youtube.com/watch?v=ahXI MUkSXX0)

Recursive Fibonacci

■ Let fib(n) = the nth Fibonacci number, $n \ge 0$

- fib(0) = 0 (base case)
- fib(1) = 1 (base case)
- fib(n) = fib(n-1) + fib(n-2), n > 1

Recursive Call Tree

Recursive Call Tree

Iterative Fibonacci

def fib(n): $\mathbf{x} = \mathbf{0}$ next x = 1for i in range(1,n+1): $old_x = x$ x = next x $next_x = old x + x$ return x

Simultaneous Assignment

Assign values to multiple variables in a single statement:

sum, diff =
$$x + y$$
, $x - y$
x, $y = y$, x

Iterative Fibonacci

Geometric Recursion (Fractals)

A recursive operation performed on successively smaller regions.

http://fusionanomaly.net/recursion.jpg

Sierpinski's Triangle

Sierpinski's Carpet

(the next slide shows an animation that could give some people headaches)

Mandelbrot set

Source: Clint Sprott, http://sprott.physics.wisc.edu/fractals/animated/

Fancier fractals

Next Lecture

recursion for search

image: Matt Roberts, http://people.bath.ac.uk/mir20/blogposts/bst_close_up.php