
Recursion: Introduction



Announcements

¤ Deadlines

¤ Exam on Thursday: Units 1 – 5 (inclusive)

¤ PA 4 due tonight

¤ OLI Recursion over the weekend

¤ Monday: PA5 is due.



Today

¤ Review of Big-O

¤ Recursion:
¤ Introduction to recursion
¤ What it is

¤ Recursion and the stack
¤ Recursion and iteration

¤ Examples of simple recursive functions
¤ Geometric recursion: fractals



Big-O Review



Asymptotic Analysis

¤ Beyond number of operations

¤ Goal: understanding behavior of program over the long run, 
with increasingly large inputs

¤ We are not concerned with constants factors: 
¤ How many iterations?
¤ Not operations in each iteration

¤ Gives a useful approximation, suppresses details

¤ Worst-case



Order of Complexity

¤ We express this as the (time) order of complexity

¤ Normally expressed using Big-O notation.

¤ Big-0 is ignores constants, focuses on highest power of n

Number of iterations Order of Complexity

¤ n O(n)
¤ 3n+3 O(n)

¤ 2n+8 O(n)



Linear Search: Worst Case
# let n = the length of list.
def search(list, key):
index = 0 1
while index < len(list): n+1

if list[index] == key: n
return index

index = index + 1 n
return None 1

Total: 3n+3



Linear Search: Worst Case 
Simplified

# let n = the length of list.
def search(list, key):
index = 0
while index < len(list): n iterations

if list[index] == key:
return index

index = index + 1
return None



O(n) (“Linear”)

n
(amount of data)

Number of
Operations

n3n+3
2n + 8



O(n)

n
(amount of data)

Number of
Operations

n

10 20 30

10

20

30 For a linear algorithm,
if you double the amount
of data, the amount of work
you do doubles
(approximately).



O(1) (“Constant-Time”)

n
(amount of data)

Number of
Operations

4
4 = O(1)

1
1 = O(1)

For a constant-time algorithm,
if you double the amount
of data, the amount of work
you do stays the same.



Insertion Sort: worst case
# let n = the length of list. 

def isort(list):
i = 1
while i != len(list): #n-1 iterations

move_left(list,i)
i = i + 1

return list

What is the cost of move_left?



Insertion Sort: cost of move left

# let n = the length of list.
def move_left(a, i):

x = a.pop(i)             n iterations
j = i - 1

while j >= 0 and a[j] > x: i iterations
j = j – 1

a.insert(j + 1, x)        n iterations

Total cost (at most): n + i + n

But what is i? To find out, look at isort, which calls 
move_left, supplying a value for i



Insertion Sort: worst case
# let n = the length of list. 

def isort(list):
i = 1
while i != len(list): #n-1 iterations

move_left(list,i) #i goes from 1 to n-1

i = i + 1
return list

Total cost: cost of move_left as i goes from 1 to n-1



Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)
i = i + 1

return list



Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)
i = i + 1

return list

n-1



Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop
while loop
insert 

i = i + 1
return list

n-1



Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop…………………..……..
while loop
insert

i = i + 1
return list

n-1

n



Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop…………………..……..
while loop
insert …………………..….

i = i + 1
return list

n-1

n

n



Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert .........
while loop

i = i + 1
return list

n-1

n + n



Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert .........
while loop

i = i + 1
return list

n-1

2n



Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert .........
while loop

i = i + 1
return list

n-1

2n
1+



Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert .........
while loop

i = i + 1
return list

n-1

2n
1+2+



Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert .........
while loop

i = i + 1
return list

n-1

2n
1+2+3…



How can we express this?
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert .........
while loop

i = i + 1
return list

n-1

2n
1+2+3…n-1



How can we express this?
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert .........
while loop

i = i + 1
return list

1+2+3…n-1

n-1

2n
1+2+3…n-1



Test for n = 7

1+2+3…n-1



Test for n = 7.  

1+2+3+4+5+6
1+2+3…n-1



Test for n = 7.  

1+2+3+4+5+6
1+2+3…n-1



Test for n = 7.  

1+2+3+4+5+6
1+2+3…n-1

(6) * (7) / 2 blue circles



Test for n = 7.  

1+2+3+4+5+6
1+2+3…n-1

(6) * (7) / 2 blue circles

(n-1) * (n) / 2 blue circles



Our equation …

(n-1)*n/2
1+2+3…n-1

(6) * (7) / 2 blue circles

(n-1) * (n) / 2 blue circles



Our equation …

(n-1)*n/2
1+2+3…n-1



How can we express this?
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert .........
while loop

i = i + 1
return list(n-1)*n/2
1+2+3…n-1

n-1

2n
1+2+3…n-1



How can we express this?
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert .........
while loop

i = i + 1
return list

(n-1)*n/2

n-1

2n
1+2+3…n-1



Combine to calculate
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert .........
while loop

i = i + 1
return list

n-1

2n +
(n-1)*n/2



How can we express this?
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert & while

i = i + 1
return list

n-1

2n + (n-1)*n/2



How can we express this?
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

i = i + 1
return list

n-1
2n + (n-1)*n/2



How can we express this?
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

i = i + 1
return list

n-1
(2n + (n-1)*n/2)



Total number of operations
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

i = i + 1
return list

(n-1) * (2n + (n-1)*n/2)



Generalizing…

(n-1) * (2n + (n-1)*n/2)

¤ = 2n2 - 2n + (n2 - n) / 2

¤ = (5n2 - 5n) / 2 

¤ = (5/2)n2 - (5/2)n



Highest order term? …

(5/2)n2 – (5/2)n

n2



Order of Complexity

Number of operations Order of Complexity
n2 O(n2)
(5/2)n2 - (1/2)n O(n2)
2n2 + 7 O(n2)

Usually doesn’t matter what 
the constants are… 
we are only concerned about 
the highest power of n.

f(n) is O(g(n))means
f(n) < g(n)･k for some 
positive k



O(n2) (“Quadratic”)

n
(amount of data)

Number of
Operations

n2/2 + 3n/2 – 1 2n2 + 7
n2



O(n2)

N
(amount of data)

Number of
Operations

10 20 30

100

400

900

N2

For a quadratic algorithm,
if you double the amount
of data, the amount of work
you do quadruples
(approximately).



Two Examples

¤Linear Sort O(n) linear
¤Insertion Sort O(n2) quadratic



Big O

¤ O(1) constant

¤ O(log n) logarithmic

¤ O(n) linear

¤ O(n log n) log linear

¤ O(n2) quadratic

¤ O(n3) cubic

¤ O(2n) exponential



How work increases

Input Size O(n) O(n2) O(n3) O(2n)

2 2 4 8 4

4 4 16 64 16

8 8 64 512 256

16 16 256 4096 65536

32 32 1024 32768 4294967296



Recursion

The Loopless Loop



Recursion

¤ A recursive function is one that calls itself.

¤ def i_am_recursive(x):
maybe do some work
if there is more work to do:

i_am_recursive(next(x))
return the desired result

¤ Infinite loop? Not necessarily, not if next(x) needs less work 
than x.



Recursive Definitions

¤ Every recursive function definition includes two parts:
¤ Base case(s) (non-recursive)

One or more simple cases that can be done directly or 
immediately

¤ Recursive case(s)
One or more cases that require solving �simpler� version(s) of 
the original problem.
¤ By �simpler�, we mean �smaller� or �shorter� or �closer to 

the base case�.



Example: Factorial

• n! = n × (n-1) × (n-2) × … × 1
2! =    2 × 1
3! =    3 × 2 × 1
4! =    4 × 3 × 2 × 1

¤alternatively:
0! = 1 (Base case)
n! = n × (n-1)! 
So 4! = 4 × 3! è 3! = 3 × 2! è 2! = 2 × 1! è

1! = 1 × 0! è 0! = 1

(Recursive case)

9! = 362,880
10! =  ?10! = 3,628,800
10! = 10 × 9! 



Recursion conceptually

6

4! = 4(3!) 
3! = 3(2!)

2! = 2(1!)
1! = 1 (0!) 

Base case
make smaller instances 
of the same problem



Recursion conceptually

7

4! = 4(3!) 
3! = 3(2!)

2! = 2(1!)
1! = 1 (0!) = 1(1) = 1

Compute the base case

make smaller instances 
of the same problem



Recursion conceptually

8

4! = 4(3!) 
3! = 3(2!)

2! = 2(1!) = 2 
1! = 1 (0!) = 1(1) = 1

Compute the base case

make smaller instances 
of the same problem

build up  
the result 



Recursion conceptually

9

4! = 4(3!) 
3! = 3(2!) = 6

2! = 2(1!) = 2 
1! = 1 (0!) = 1(1) = 1

Compute the base case

make smaller instances 
of the same problem

build up  
the result 



Recursion conceptually

10

4! = 4(3!) = 24
3! = 3(2!) = 6

2! = 2(1!) = 2 
1! = 1 (0!) = 1(1) = 1

Compute the base case

make smaller instances 
of the same problem

build up  
the result 



Recipe for Writing Recursive Functions 
(by Dave Feinberg)

1. Write if. (Why?)
There must be at least 2 cases: base and recursive

2. Handle simplest case(s).
No recursive call needed (base case).

3. Write recursive calls(s). 
Input is slightly simpler to get closer to base case.

4. Assume the recursive call works!
Ask yourself: What does it do?

Ask yourself: How does it help? 

14



Recursive Factorial in Python

# Assumes n >= 0
def factorial(n):

if n == 0:    # base case
return 1

else:         # recursive case
result = factorial(n-1)
return n * result 

11

0! = 1 (Base case)
n! = n × (n-1)! (Recursive case)



factorial(4)?S
T
A
C
K

n=4



factorial(4)? = 4 * factorial(3)S
T
A
C
K

n=4



factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? 

n=4

n=3



63

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

n=4

n=3



factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)?

n=4

n=3

n=2



factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

n=4

n=3

n=2



factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)? 

n=4

n=3

n=2

n=1



factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)? = 1 * factorial(0)

n=4

n=3

n=2

n=1



factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)? = 1 * factorial(0)

factorial(0) = 1

n=4

n=3

n=2

n=1

n=0



factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1) = 1 * 1 = 1

n=4

n=3

n=2

n=1



factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2) = 2 * 1 = 2

n=4

n=3

n=2



factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3) = 3 * 2 = 6

n=4

n=3



factorial(4) = 4 * 6 = 24S
T
A
C
K

n=4



Recursive vs. Iterative Solutions

¤ For every recursive function, 

there is an equivalent iterative solution.

¤ For every iterative function, 

there is an equivalent recursive 
solution.

¤ But some problems are easier to solve one way than the other 
way.

¤ And be aware that most recursive programs need space for the 
stack, behind the scenes

calls itself

for loop,
while loop



Factorial Function (Iterative)
def factorial(n):

result = 1   # initialize accumulator var
for i in range(1, n+1):

result = result * i
return result

def factorial(n):
if n == 0:    # base case 

return 1
else:         # recursive case

return n * factorial(n-1)

Versus (Recursive):



A Strategy for Recursive Problem 
Solving (hat tip to Dave Evans)

¤Think of the smallest size of the problem and 
write down the solution (base case)

¤Be optimistic. Assume you magically have a working 
function to solve any size. How could you use it 
on a smaller size and use the answer to solve 
a bigger size? (recursive case)

¤Combine the base case and the recursive 
case



Recursion on Lists

Do we know how to use iteration to sum the elements in a 
list?



Recursion on Lists

¤ First we need a way of getting a smaller input from a 
larger one:
¤ Forming a sub-list of a list:

>>> a = [1, 11, 111, 1111, 11111, 111111]

>>> a[1:]
[11, 111, 1111, 11111, 111111]

>>> a[2:]
[111, 1111, 11111, 111111]

>>> a[3:]
[1111, 11111, 111111]

>>> a[3:5]
[1111, 11111]

the "tail" of list a



Recursive sum of a list
def sumlist(items):

if :

15

What is the smallest size 
list? 



Recursive sum of a list
def sumlist(items):

if items == []:

What is the sum of an empty list?

The smallest size list is the  
empty list.



Recursive sum of a list

def sumlist(items):

if items == []:

return 0
Base case:
The sum of an empty list is 0.



Recursive sum of a list

def sumlist(items):

if items == []:

return 0

else:
Recursive case:
the list is not empty



Recursive sum of a list
def sumlist(items):

if items == []:

return 0

else:

... sumlist(         ) ...

What is a simpler/smaller 
case?



Recursive sum of a list
def sumlist(items):

if items == []:

return 0

else:

... sumlist(items[1:]) ...

What if we already know
the sum of the list's tail?

�tail� of list



Recursive sum of a list

def sumlist(items):

if items == []:

return 0

else:

return items[0] + sumlist(items[1:])

15

What if we already know
the sum of the list's tail?

We can just add in the list's 
first element!



Tracing sumlist

>>> sumlist([2,5,7])

sumlist([2,5,7]) = 2 + sumlist([5,7])

5 + sumlist([7])

7 + sumlist([])

0                                         

16

def sumlist(items):
if items== []:

return 0
else:

return items[0] + sumlist(items[1:])

After reaching the base case, the final result is 
built up by the computer by adding 0+7+5+2.



8
7

List Recursion: exercise

¤ Let's create a recursive function rev(items)

¤ Input: a list of items

¤ Output: another list, with all the same items, but in reverse 
order

¤ Remember: it's usually sensible to break the list down into 
its head (first element) and its tail (all the rest). The tail is a 
smaller list, and so "closer" to the base case.

¤ Soooo… (picture on next slide)

87



Reversing a list: recursive case

see file rev_list.py

rev_list.py


Multiple Recursive Calls

¤ So far we've used just one recursive call to build 
up our answer

¤ The real conceptual power of recursion 
happens when we need more than one!

¤ Example: Fibonacci numbers



Fibonacci Numbers

¤A sequence of numbers:
0 
1 
1 
2
3
5
8
13
...

+
+

+

+
+

+



Fibonacci Numbers in Nature

¤ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 
etc.

¤ Number of branches on a tree, petals on 
a flower, spirals on a pineapple.

¤ Vi Hart's video on Fibonacci numbers
(http://www.youtube.com/watch?v=ahXI
MUkSXX0)

http://www.youtube.com/watch?v=ahXIMUkSXX0


Recursive Fibonacci
¤ Let fib(n) = the nth Fibonacci number, n ≥ 0

– fib(0) = 0 (base case)

– fib(1) = 1 (base case)

– fib(n) = fib(n-1) + fib(n-2),n > 1

def fib(n):
if n == 0 or n == 1:

return n
else:

return fib(n-1) + fib(n-2)

Two recursive calls!



Recursive Call Tree

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(1) fib(0)

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1



fib(1)

fib(1) fib(0)

fib(2)

fib(3)

fib(5)

fib(0)

fib(1) fib(0)fib(1)

fib(4)

fib(1)

fib(2)

fib(3) fib(2)

5

3

1

2

1 0

1 1

2

1 0

1

1 0

1

Recursive Call Tree

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1



Iterative Fibonacci
def fib(n):

x = 0
next_x = 1
for i in range(1,n+1):

old_x = x

x = next_x

next_x = old_x + x 
return x

sequence:
0 
1 
1 
2
3
5
8
13

...

+
+

+

+
+

+



Simultaneous Assignment

Assign values to multiple variables in a single statement:

sum, diff = x + y, x – y

x, y = y, x



Iterative Fibonacci
def fib(n):

x = 0
next_x = 1
for i in range(1,n+1): 

x, next_x = next_x, x + next_x
return x

Faster than the 
recursive 
version. Why?

simultaneous 
assignment



Geometric Recursion (Fractals)

¤ A recursive operation performed on successively smaller 
regions.

Sierpinski's
Triangle

http://fusionanomaly.net/recursion.jpg



Sierpinski�s Triangle



Sierpinski�s Carpet



(the next slide shows an 
animation that could give 
some people headaches)



Mandelbrot set

Source: Clint Sprott, http://sprott.physics.wisc.edu/fractals/animated/

http://sprott.physics.wisc.edu/fractals/animated/


Fancier fractals



Next Lecture
recursion for               

search

image: Matt Roberts, http://people.bath.ac.uk/mir20/blogposts/bst_close_up.php


