
Recursion: Introduction

Announcements

¤ Deadlines

¤ Exam on Thursday: Units 1 – 5 (inclusive)

¤ PA 4 due tonight

¤ OLI Recursion over the weekend

¤ Monday: PA5 is due.

Today

¤ Review of Big-O

¤ Recursion:
¤ Introduction to recursion
¤ What it is

¤ Recursion and the stack
¤ Recursion and iteration

¤ Examples of simple recursive functions
¤ Geometric recursion: fractals

Big-O Review

Asymptotic Analysis

¤ Beyond number of operations

¤ Goal: understanding behavior of program over the long run,
with increasingly large inputs

¤ We are not concerned with constants factors:
¤ How many iterations?
¤ Not operations in each iteration

¤ Gives a useful approximation, suppresses details

¤ Worst-case

Order of Complexity

¤ We express this as the (time) order of complexity

¤ Normally expressed using Big-O notation.

¤ Big-0 is ignores constants, focuses on highest power of n

Number of iterations Order of Complexity

¤ n O(n)
¤ 3n+3 O(n)

¤ 2n+8 O(n)

Linear Search: Worst Case
let n = the length of list.
def search(list, key):
index = 0 1
while index < len(list): n+1

if list[index] == key: n
return index

index = index + 1 n
return None 1

Total: 3n+3

Linear Search: Worst Case
Simplified

let n = the length of list.
def search(list, key):
index = 0
while index < len(list): n iterations

if list[index] == key:
return index

index = index + 1
return None

O(n) (“Linear”)

n
(amount of data)

Number of
Operations

n3n+3
2n + 8

O(n)

n
(amount of data)

Number of
Operations

n

10 20 30

10

20

30 For a linear algorithm,
if you double the amount
of data, the amount of work
you do doubles
(approximately).

O(1) (“Constant-Time”)

n
(amount of data)

Number of
Operations

4
4 = O(1)

1
1 = O(1)

For a constant-time algorithm,
if you double the amount
of data, the amount of work
you do stays the same.

Insertion Sort: worst case
let n = the length of list.

def isort(list):
i = 1
while i != len(list): #n-1 iterations

move_left(list,i)
i = i + 1

return list

What is the cost of move_left?

Insertion Sort: cost of move left

let n = the length of list.
def move_left(a, i):

x = a.pop(i) n iterations
j = i - 1

while j >= 0 and a[j] > x: i iterations
j = j – 1

a.insert(j + 1, x) n iterations

Total cost (at most): n + i + n

But what is i? To find out, look at isort, which calls
move_left, supplying a value for i

Insertion Sort: worst case
let n = the length of list.

def isort(list):
i = 1
while i != len(list): #n-1 iterations

move_left(list,i) #i goes from 1 to n-1

i = i + 1
return list

Total cost: cost of move_left as i goes from 1 to n-1

Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)
i = i + 1

return list

Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)
i = i + 1

return list

n-1

Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop
while loop
insert

i = i + 1
return list

n-1

Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop…………………..……..
while loop
insert

i = i + 1
return list

n-1

n

Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop…………………..……..
while loop
insert …………………..….

i = i + 1
return list

n-1

n

n

Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert
while loop

i = i + 1
return list

n-1

n + n

Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert
while loop

i = i + 1
return list

n-1

2n

Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert
while loop

i = i + 1
return list

n-1

2n
1+

Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert
while loop

i = i + 1
return list

n-1

2n
1+2+

Examining the cost
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert
while loop

i = i + 1
return list

n-1

2n
1+2+3…

How can we express this?
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert
while loop

i = i + 1
return list

n-1

2n
1+2+3…n-1

How can we express this?
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert
while loop

i = i + 1
return list

1+2+3…n-1

n-1

2n
1+2+3…n-1

Test for n = 7

1+2+3…n-1

Test for n = 7.

1+2+3+4+5+6
1+2+3…n-1

Test for n = 7.

1+2+3+4+5+6
1+2+3…n-1

Test for n = 7.

1+2+3+4+5+6
1+2+3…n-1

(6) * (7) / 2 blue circles

Test for n = 7.

1+2+3+4+5+6
1+2+3…n-1

(6) * (7) / 2 blue circles

(n-1) * (n) / 2 blue circles

Our equation …

(n-1)*n/2
1+2+3…n-1

(6) * (7) / 2 blue circles

(n-1) * (n) / 2 blue circles

Our equation …

(n-1)*n/2
1+2+3…n-1

How can we express this?
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert
while loop

i = i + 1
return list(n-1)*n/2
1+2+3…n-1

n-1

2n
1+2+3…n-1

How can we express this?
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert
while loop

i = i + 1
return list

(n-1)*n/2

n-1

2n
1+2+3…n-1

Combine to calculate
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert
while loop

i = i + 1
return list

n-1

2n +
(n-1)*n/2

How can we express this?
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

pop & insert & while

i = i + 1
return list

n-1

2n + (n-1)*n/2

How can we express this?
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

i = i + 1
return list

n-1
2n + (n-1)*n/2

How can we express this?
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

i = i + 1
return list

n-1
(2n + (n-1)*n/2)

Total number of operations
def isort(list):

i = 1

while i != len(list):
move_left(list,i)

i = i + 1
return list

(n-1) * (2n + (n-1)*n/2)

Generalizing…

(n-1) * (2n + (n-1)*n/2)

¤ = 2n2 - 2n + (n2 - n) / 2

¤ = (5n2 - 5n) / 2

¤ = (5/2)n2 - (5/2)n

Highest order term? …

(5/2)n2 – (5/2)n

n2

Order of Complexity

Number of operations Order of Complexity
n2 O(n2)
(5/2)n2 - (1/2)n O(n2)
2n2 + 7 O(n2)

Usually doesn’t matter what
the constants are…
we are only concerned about
the highest power of n.

f(n) is O(g(n))means
f(n) < g(n)･k for some
positive k

O(n2) (“Quadratic”)

n
(amount of data)

Number of
Operations

n2/2 + 3n/2 – 1 2n2 + 7
n2

O(n2)

N
(amount of data)

Number of
Operations

10 20 30

100

400

900

N2

For a quadratic algorithm,
if you double the amount
of data, the amount of work
you do quadruples
(approximately).

Two Examples

¤Linear Sort O(n) linear
¤Insertion Sort O(n2) quadratic

Big O

¤ O(1) constant

¤ O(log n) logarithmic

¤ O(n) linear

¤ O(n log n) log linear

¤ O(n2) quadratic

¤ O(n3) cubic

¤ O(2n) exponential

How work increases

Input Size O(n) O(n2) O(n3) O(2n)

2 2 4 8 4

4 4 16 64 16

8 8 64 512 256

16 16 256 4096 65536

32 32 1024 32768 4294967296

Recursion

The Loopless Loop

Recursion

¤ A recursive function is one that calls itself.

¤ def i_am_recursive(x):
maybe do some work
if there is more work to do:

i_am_recursive(next(x))
return the desired result

¤ Infinite loop? Not necessarily, not if next(x) needs less work
than x.

Recursive Definitions

¤ Every recursive function definition includes two parts:
¤ Base case(s) (non-recursive)

One or more simple cases that can be done directly or
immediately

¤ Recursive case(s)
One or more cases that require solving �simpler� version(s) of
the original problem.
¤ By �simpler�, we mean �smaller� or �shorter� or �closer to

the base case�.

Example: Factorial

• n! = n × (n-1) × (n-2) × … × 1
2! = 2 × 1
3! = 3 × 2 × 1
4! = 4 × 3 × 2 × 1

¤alternatively:
0! = 1 (Base case)
n! = n × (n-1)!
So 4! = 4 × 3! è 3! = 3 × 2! è 2! = 2 × 1! è

1! = 1 × 0! è 0! = 1

(Recursive case)

9! = 362,880
10! = ?10! = 3,628,800
10! = 10 × 9!

Recursion conceptually

6

4! = 4(3!)
3! = 3(2!)

2! = 2(1!)
1! = 1 (0!)

Base case
make smaller instances
of the same problem

Recursion conceptually

7

4! = 4(3!)
3! = 3(2!)

2! = 2(1!)
1! = 1 (0!) = 1(1) = 1

Compute the base case

make smaller instances
of the same problem

Recursion conceptually

8

4! = 4(3!)
3! = 3(2!)

2! = 2(1!) = 2
1! = 1 (0!) = 1(1) = 1

Compute the base case

make smaller instances
of the same problem

build up
the result

Recursion conceptually

9

4! = 4(3!)
3! = 3(2!) = 6

2! = 2(1!) = 2
1! = 1 (0!) = 1(1) = 1

Compute the base case

make smaller instances
of the same problem

build up
the result

Recursion conceptually

10

4! = 4(3!) = 24
3! = 3(2!) = 6

2! = 2(1!) = 2
1! = 1 (0!) = 1(1) = 1

Compute the base case

make smaller instances
of the same problem

build up
the result

Recipe for Writing Recursive Functions
(by Dave Feinberg)

1. Write if. (Why?)
There must be at least 2 cases: base and recursive

2. Handle simplest case(s).
No recursive call needed (base case).

3. Write recursive calls(s).
Input is slightly simpler to get closer to base case.

4. Assume the recursive call works!
Ask yourself: What does it do?

Ask yourself: How does it help?

14

Recursive Factorial in Python

Assumes n >= 0
def factorial(n):

if n == 0: # base case
return 1

else: # recursive case
result = factorial(n-1)
return n * result

11

0! = 1 (Base case)
n! = n × (n-1)! (Recursive case)

factorial(4)?S
T
A
C
K

n=4

factorial(4)? = 4 * factorial(3)S
T
A
C
K

n=4

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)?

n=4

n=3

63

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

n=4

n=3

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)?

n=4

n=3

n=2

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

n=4

n=3

n=2

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)?

n=4

n=3

n=2

n=1

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)? = 1 * factorial(0)

n=4

n=3

n=2

n=1

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)? = 1 * factorial(0)

factorial(0) = 1

n=4

n=3

n=2

n=1

n=0

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1) = 1 * 1 = 1

n=4

n=3

n=2

n=1

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2) = 2 * 1 = 2

n=4

n=3

n=2

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3) = 3 * 2 = 6

n=4

n=3

factorial(4) = 4 * 6 = 24S
T
A
C
K

n=4

Recursive vs. Iterative Solutions

¤ For every recursive function,

there is an equivalent iterative solution.

¤ For every iterative function,

there is an equivalent recursive
solution.

¤ But some problems are easier to solve one way than the other
way.

¤ And be aware that most recursive programs need space for the
stack, behind the scenes

calls itself

for loop,
while loop

Factorial Function (Iterative)
def factorial(n):

result = 1 # initialize accumulator var
for i in range(1, n+1):

result = result * i
return result

def factorial(n):
if n == 0: # base case

return 1
else: # recursive case

return n * factorial(n-1)

Versus (Recursive):

A Strategy for Recursive Problem
Solving (hat tip to Dave Evans)

¤Think of the smallest size of the problem and
write down the solution (base case)

¤Be optimistic. Assume you magically have a working
function to solve any size. How could you use it
on a smaller size and use the answer to solve
a bigger size? (recursive case)

¤Combine the base case and the recursive
case

Recursion on Lists

Do we know how to use iteration to sum the elements in a
list?

Recursion on Lists

¤ First we need a way of getting a smaller input from a
larger one:
¤ Forming a sub-list of a list:

>>> a = [1, 11, 111, 1111, 11111, 111111]

>>> a[1:]
[11, 111, 1111, 11111, 111111]

>>> a[2:]
[111, 1111, 11111, 111111]

>>> a[3:]
[1111, 11111, 111111]

>>> a[3:5]
[1111, 11111]

the "tail" of list a

Recursive sum of a list
def sumlist(items):

if :

15

What is the smallest size
list?

Recursive sum of a list
def sumlist(items):

if items == []:

What is the sum of an empty list?

The smallest size list is the
empty list.

Recursive sum of a list

def sumlist(items):

if items == []:

return 0
Base case:
The sum of an empty list is 0.

Recursive sum of a list

def sumlist(items):

if items == []:

return 0

else:
Recursive case:
the list is not empty

Recursive sum of a list
def sumlist(items):

if items == []:

return 0

else:

... sumlist() ...

What is a simpler/smaller
case?

Recursive sum of a list
def sumlist(items):

if items == []:

return 0

else:

... sumlist(items[1:]) ...

What if we already know
the sum of the list's tail?

�tail� of list

Recursive sum of a list

def sumlist(items):

if items == []:

return 0

else:

return items[0] + sumlist(items[1:])

15

What if we already know
the sum of the list's tail?

We can just add in the list's
first element!

Tracing sumlist

>>> sumlist([2,5,7])

sumlist([2,5,7]) = 2 + sumlist([5,7])

5 + sumlist([7])

7 + sumlist([])

0

16

def sumlist(items):
if items== []:

return 0
else:

return items[0] + sumlist(items[1:])

After reaching the base case, the final result is
built up by the computer by adding 0+7+5+2.

8
7

List Recursion: exercise

¤ Let's create a recursive function rev(items)

¤ Input: a list of items

¤ Output: another list, with all the same items, but in reverse
order

¤ Remember: it's usually sensible to break the list down into
its head (first element) and its tail (all the rest). The tail is a
smaller list, and so "closer" to the base case.

¤ Soooo… (picture on next slide)

87

Reversing a list: recursive case

see file rev_list.py

rev_list.py

Multiple Recursive Calls

¤ So far we've used just one recursive call to build
up our answer

¤ The real conceptual power of recursion
happens when we need more than one!

¤ Example: Fibonacci numbers

Fibonacci Numbers

¤A sequence of numbers:
0
1
1
2
3
5
8
13
...

+
+

+

+
+

+

Fibonacci Numbers in Nature

¤ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
etc.

¤ Number of branches on a tree, petals on
a flower, spirals on a pineapple.

¤ Vi Hart's video on Fibonacci numbers
(http://www.youtube.com/watch?v=ahXI
MUkSXX0)

http://www.youtube.com/watch?v=ahXIMUkSXX0

Recursive Fibonacci
¤ Let fib(n) = the nth Fibonacci number, n ≥ 0

– fib(0) = 0 (base case)

– fib(1) = 1 (base case)

– fib(n) = fib(n-1) + fib(n-2),n > 1

def fib(n):
if n == 0 or n == 1:

return n
else:

return fib(n-1) + fib(n-2)

Two recursive calls!

Recursive Call Tree

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(1) fib(0)

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

fib(1)

fib(1) fib(0)

fib(2)

fib(3)

fib(5)

fib(0)

fib(1) fib(0)fib(1)

fib(4)

fib(1)

fib(2)

fib(3) fib(2)

5

3

1

2

1 0

1 1

2

1 0

1

1 0

1

Recursive Call Tree

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

Iterative Fibonacci
def fib(n):

x = 0
next_x = 1
for i in range(1,n+1):

old_x = x

x = next_x

next_x = old_x + x
return x

sequence:
0
1
1
2
3
5
8
13

...

+
+

+

+
+

+

Simultaneous Assignment

Assign values to multiple variables in a single statement:

sum, diff = x + y, x – y

x, y = y, x

Iterative Fibonacci
def fib(n):

x = 0
next_x = 1
for i in range(1,n+1):

x, next_x = next_x, x + next_x
return x

Faster than the
recursive
version. Why?

simultaneous
assignment

Geometric Recursion (Fractals)

¤ A recursive operation performed on successively smaller
regions.

Sierpinski's
Triangle

http://fusionanomaly.net/recursion.jpg

Sierpinski�s Triangle

Sierpinski�s Carpet

(the next slide shows an
animation that could give
some people headaches)

Mandelbrot set

Source: Clint Sprott, http://sprott.physics.wisc.edu/fractals/animated/

http://sprott.physics.wisc.edu/fractals/animated/

Fancier fractals

Next Lecture
recursion for

search

image: Matt Roberts, http://people.bath.ac.uk/mir20/blogposts/bst_close_up.php

