
Iteration: 
Sorting, Scalability, Big O Notation
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Announcements

¤ Yesterday?
¤ Lab 4

¤ Tonight
¤ Lab 5

¤ Tomorrow
¤ PS 4
¤ PA 4



Yesterday

¤ Quick Review: Sieve of Eratosthenes

¤ Character Comparisons (Unicode)

¤ Linear Search

¤ Sorting



Today

¤ Review: Insertion Sort

¤ Scalability

¤ Big O Notation



Sorting
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In-place Insertion Sort

¤ Idea: during sorting, a prefix of the list is already sorted. (This 
prefix might contain one, two, or more elements.)

¤ Each element that we process is inserted into the correct 
place in the sorted prefix of the list. 

¤ Result: sorted part of the list gets bigger until the whole 
thing is sorted.
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In-place Insertion Sort Algorithm
Given a list a of length n, n > 0.

1. Set i = 1.

2. While i is not equal to n, do the following:

a. Insert a[i] into its correct position in a[0] to a[i] (inclusive).

b. Add 1 to i.

3. Return the list a (which is now sorted).



Example

a = [53, 26, 76, 30, 14, 91, 68, 42]
i =       1

Insert a[1] into its correct position in a[0..1] 
and then add 1 to i:

53 moves to the right,

26 is inserted into the list at position 0

a = [26, 53, 76, 30, 14, 91, 68, 42]

i =           2



Writing the Python code

def isort(items):

i = 1

while i < len(items):

move_left(items, i)

i = i + 1

return items

insert a[i] into a[0..i]
in its correct sorted
position



Moving left using search

To move the element x at index i �left� to its 
correct position, remove it, start at position i-
1, and search from right to left until we find the 
first element that is less than or equal to x.

Then insert x back into the list to the right of 
that element.

(The Python insert operation does not 
overwrite. Think of it as �squeezing into the 
list�.)



76:

a = [26, 53, 76, 30, 14, 91, 68, 42]

Searching from right to left starting with 53, the first element less than 76 is 53. 
Insert 76 to the right of 53 (where it was before).

14: 

a = [26, 30, 53, 76, 14, 91, 68, 42]

Searching from right to left starting with 76, all elements left of 14 are greater 
than 14. Insert 14 into position 0.

68:

a = [14, 26, 30, 53, 76, 91, 68, 42]

Searching from right to left starting with 91, the first element less than 68 is 53. 

Insert 68 to the right of 53.

Moving left (numbers)



The move_left algorithm

Given a list a of length n, n > 0 and a value at

index i to be moved left in the list.

1.Remove a[i] from the list and store in x.

2.Set j = i-1.

3.While j >= 0 and a[j] > x, subtract 1 from j.

4. (At this point, what do we know? Either j is …, 
or a[j] is …) Insert x into position a[j+1].



Removing a list element: pop

>>> a = ["Wednesday", "Monday", "Tuesday"]
>>> day = a.pop(1)
>>> a
['Wednesday', 'Tuesday']
>>> day
'Monday'
>>> day = a.pop(0)
>>> day
'Wednesday'
>>> a
['Tuesday']



Inserting an element: insert

>> a = [10, 20, 30]
=> [10, 20, 30]
>> a.insert(0, "foo")
=> ["foo", 10, 20, 30]
>> a.insert(2, "bar")
=> ["foo", 10, "bar", 20, 30]
>> a.insert(5, "baz")
=> ["foo", 10, "bar", 20, 30, "baz"]



move_left in Python

def move_left(items, i):

x = items.pop(i)

j = i - 1

while j >= 0 and items[j] > x:

j = j – 1

items.insert(j + 1, x)



Problems, Algorithms and Programs

¤ One problem : potentially many algorithms

¤ One algorithm : potentially many programs

¤ We can compare  how efficient different programs are 
both analytically and empirically 
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Analytically: Which One is Faster?

def contains1(items, key):

index = 0

while index < len(items):

if items[index] == key:

return True

index = index + 1

return False

def contains2(items, key):

ln = len(items)

index = 0

while index < ln:

if items[index] == key:

return True

index = index + 1

return False
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¤ len(items) is executed each 
time loop condition is checked 

len(items) is executed only 
once and its value is stored in ln



Is a for-loop faster than a while-loop?

33

•Add the following function to our collection of 
contains functions from the previous page:

def contains3(items, key):
for index in range(len(items)):

if items[index] == key:
return True

return False



Empirical Measurement

¤ Three programs for the same algorithm; let’s measure which is faster:

¤ Define time2 and time3 similarly to call contains2 and contains
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import time
def time1(items, key) :

start = time.time()
contains1(items, key)
runtime = time.time() - start
print("contains1:", runtime)



Doing the measurement
>>> items = [None] * 1000000

>>> time1(items1, 1)

contains1: 0.1731700897216797

>>> time2(items1, 1)

contains2: 0.1145467758178711

>>> time3(items1, 1)

contains3: 0.07184195518493652

Conclusion: using for and range() is faster than using 
while and addition when doing an unsuccessful 
search  Why?
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A Different Measurement
¤ What if we want to know how the different loops perform when the 

key matches the first element?

>>> time1(items1, None)

contains1: 4.0531158447265625e-06

>>> time2(items1, None)

contains2: 4.291534423828125e-06

>>> time3(items1, None)

contains3: 1.0013580322265625e-05

Now the relationship is different; contains3 is 
slowest! Why?
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Thinking like a computer scientist
Code Analysis



Efficiency

¤ A computer program should be correct, but it should 
also
¤ execute as quickly as possible (time-efficiency)
¤ use memory wisely (storage-efficiency)

¤ How do we compare programs (or algorithms in 
general) with respect to execution time?
¤ various computers run at different speeds due to different 

processors
¤ compilers optimize code before execution
¤ the same algorithm can be written differently depending 

on the programming paradigm



Counting Operations
¤ We measure time efficiency by considering “work” 

done  
¤ Counting the number of operations performed by the 

algorithm.

¤ But what is an “operation”?
¤ assignment statements
¤ comparisons
¤ function calls
¤ return statements

¤ We think of an operation as any computation that is 
independent of the size of our input.

Think of it in a 
machine-independent way



Linear Search

Best case: the key is the first 
element in the list

# let n = the length of list.
def search(list, key):

index = 0
while index < len(list):

if list[index] == key:
return index

index = index + 1
return None



Linear Search: Best  Case

# let n = the length of list.
def search(list, key):
index = 0 1
while index < len(list): 1

if list[index] == key: 1
return index 1

index = index + 1
return None

Total:4



Linear Search: Worst  Case

Worst case: the key is not an   
element in the list

# let n = the length of list.
def search(list, key):
index = 0
while index < len(list):

if list[index] == key:
return index

index = index + 1
return None



Linear Search: Worst Case
# let n = the length of list.
def search(list, key):
index = 0 1
while index < len(list): n+1

if list[index] == key: n
return index

index = index + 1 n
return None 1

Total: 3n+3



Asymptotic Analysis

¤How do we know that each operation we count takes 
the same amount of time? 
¤We don’t.

¤So generally, we look at the process more abstractly
¤We care about the behavior of a program in the long run (on 

large input sizes)
¤We don’t care about constant factors (we care about how 

many iterations we make, not how many operations we have 
to do in each iteration)



What Do We Gain?
¤Show important characteristics in terms of resource 

requirements

¤Suppress tedious details

¤Matches the outcomes in practice quite well

¤As long as operations are faster than some constant 
(1 ns? 1 μs? 1 year?), it does not matter  



Linear Search: Best Case 
Simplified

# let n = the length of list.
def search(list, key):
index = 0
while index < len(list): 1 iteration

if list[index] == key:
return index

index = index + 1
return None



Linear Search: Worst Case 
Simplified

# let n = the length of list.
def search(list, key):
index = 0
while index < len(list): n iterations

if list[index] == key:
return index

index = index + 1
return None



Order of Complexity

¤ For very large n, we express the number of operations 
as the (time) order of complexity.

¤ For asymptotic upper bound, order of complexity is 
often expressed using Big-O notation:
¤ Number of operations Order of Complexity
¤ n O(n)
¤ 3n+3 O(n)
¤ 2n+8 O(n)

Usually doesn't
matter what the
constants are...
we are only 
concerned about
the highest power
of n.



Why don’t constants matter?

(n=1) 45n3 + 20n2 + 19 = 84

(n=2) 45n3 + 20n2 + 19 = 459

(n=3) 45n3 + 20n2 + 19 = 1414



O(n) (“Linear”)

n
(amount of data)

Number of
Operations

n3n+3
2n + 8



O(n)

n
(amount of data)

Number of
Operations

n

10 20 30

10

20

30 For a linear algorithm,
if you double the amount
of data, the amount of work
you do doubles
(approximately).



O(1) (“Constant-Time”)

n
(amount of data)

Number of
Operations

4
4 = O(1)

1
1 = O(1)

For a constant-time algorithm,
if you double the amount
of data, the amount of work
you do stays the same.



Linear Search

¤Best Case: O(1)

¤Worst Case: O(n)

¤Average Case: ?
¤Depends on the distribution of queries
¤ But can’t be worse than O(n)



Insertion Sort

# let n = the length of list.
def isort(list):

i = 1
while i != len(list): n-1 iterations

move_left(list, i)
i = i + 1

return list



move_left

at most

# let n = the length of list.
def move_left(a, i):

x = a.pop(i)
j = i - 1
while j >= 0 and a[j] > x: i iterations

j = j – 1
a.insert(j + 1, x)

but how long do pop and insert take?



Measuring pop and insert

Doubling the size of the list doubles the cost (time) of insert or pop. These functions 
take linear time.

2 million elements in list, 1000 inserts:   0.7548720836639404 seconds

4 million elements in list, 1000 inserts: 1.6343820095062256 seconds

8 million elements in list, 1000 inserts: 3.327040195465088 seconds

8 million elements in list, 1000 pops: 2.031071901321411 seconds

16 million elements in list, 1000 pops: 4.033380031585693 seconds

32 million elements in list, 1000 pops: 8.06456995010376 seconds



move_left
# let n = the length of list.
def move_left(a, i):

x = a.pop(i)             n iterations
j = i - 1
while j >= 0 and a[j] > x: i iterations

j = j – 1
a.insert(j + 1, x)        n iterations



Insertion Sort: what is the cost of 
move_left?

# let n = the length of list.
def move_left(a, i):

x = a.pop(i)             n iterations
j = i - 1

while j >= 0 and a[j] > x: i iterations
j = j – 1

a.insert(j + 1, x)        n iterations

Total cost (at most): n + i + n

But what is i? To find out, look at isort, which calls 
move_left, supplying a value for i



Insertion Sort: what is the cost of 
the whole thing?

# let n = the length of list. 

def isort(list):
i = 1
while i != len(list): #n-1 iterations

move_left(list,i) #i goes from 1 to n-1

i = i + 1
return list

Total cost: cost of move_left as i goes from 1 to n-1

Cost of all the move_lefts: n + 1 + n
+ n + 2 + n
+ n + 3 + n
...
+ n + n-1 + n



¤ • On iteration i, we need to examine j elements and then 
shift i-j elements to the right, so we have to do j + (i-j) = i
units of work. 

In place iSort Worst Case…

ij



Figuring out the sum

¤ n + 1 + n

¤ + n + 2 + n

¤ + n + 3 + n 

¤ ...

¤ + n + n-1 + n

(n-1)*2n
+ 1
+ 2
+ 3 
...
+ n-1



Adding 1 through n-1

1

2

3

4

5

6

1      2      3     4      5     6       7

(6 * 7) / 2 
blue circles



Adding 1 through n-1

¤ We saw 1 + 2 + ... + 6 = (6 * 7) / 2

¤ Generalizing, 1 + 2 + ... + n-1 = (n-1)(n) / 2

¤ So our whole cost is:

¤ (n-1)*2n + 1 + 2 + 3 ... + n-1 

¤ = (n-1)*2n + (n-1)(n) / 2

¤ = 2n2 - 2n + (n2 - n) / 2

¤ = (5n2 - 5n) / 2 = (5/2)n2 - (5/2)n

¤ Observe that the highest-order term is n2



A different way…

¤ When i=1,we have1 unit of work. 

¤ When i=2, we have 2 units of work. 

¤ ... 

¤ When i = n-1, we have n-1 units of work. 

¤ The total amount of work done is: 

¤ 1 + 2 + ... + (n-1)
= n(n-1)/2
= (n2 - n)/2 (a quadratic function) 
= O(n2) 



Order of Complexity

Number of operations Order of Complexity
n2 O(n2)
(5/2)n2 - (1/2)n O(n2)
2n2 + 7 O(n2)

Usually doesn’t matter what 
the constants are… 
we are only concerned about 
the highest power of n.

f(n) is O(g(n))means
f(n) < g(n)･k for some 
positive k



Keep It Simple
¤“Big O” notation expresses an upper bound: 
f(n) is O(g(n))means f(n) < g(n)･k
(whenever n is large enough)

¤So if f(x) is O(n2), then f(x) is O(n3) too!

¤But we always use the smallest possible function, and the 
simplest possible.

¤We say 3n2 + 4n + 1 is O(n2), not O(n3)

¤We say 3n2 + 4n + 1 is O(n2), not O(3n2 + 4n)

¤...even though all of the above are true



O(n2) (“Quadratic”)

n
(amount of data)

Number of
Operations

n2/2 + 3n/2 – 1 2n2 + 7
n2



O(n2)

N
(amount of data)

Number of
Operations

10 20 30

100

400

900

N2

For a quadratic algorithm,
if you double the amount
of data, the amount of work
you do quadruples
(approximately).



Insertion Sort

¤ Worst Case: O(n2)

¤ Best Case: ?

¤ Average Case: ?

¤We’ll compare these algorithms with others soon to see how 
scalable they really are based on their order of complexities.



Big O

¤ O(1) constant

¤ O(log n) logarithmic

¤ O(n) linear

¤ O(n log n) log linear

¤ O(n2) quadratic

¤ O(n3) cubic

¤ O(2n) exponential


