Iteration: Sorting, Scalability, Big O Notation

Announcements

Yesterday?Lab 4

TonightLab 5

Tomorrow

PS 4

PA 4

Yesterday

- Quick Review: Sieve of Eratosthenes
- Character Comparisons (Unicode)
- Linear Search
- Sorting

Today

- Review: Insertion Sort
- Scalability
- Big O Notation

Sorting

- Idea: during sorting, a prefix of the list is already sorted. (This prefix might contain one, two, or more elements.)
- Each element that we process is inserted into the correct place in the sorted prefix of the list.
- Result: sorted part of the list gets bigger until the whole thing is sorted.

sorted part

sorted part

sorted part

sorted part

In-place Insertion Sort Algorithm

Given a list *a* of length n, n > 0.

- 1. Set i = 1.
- 2. While *i* is not equal to *n*, do the following:

a. Insert a[i] into its correct position in a[0] to a[i] (inclusive).
b. Add 1 to i.

3. Return the list *a* (which is now sorted).

Example

- a = [53, 26, 76, 30, 14, 91, 68, 42] i = 1
- Insert a[1] nto its correct position in a[0..1] and then add 1 to i:
- 53 moves to the right,
- 26 is instanted into the list at position 0
- a = [26, 53, 76, 30, 14, 91, 68, 42]
- i = 2

Writing the Python code

def isort(items):

return items

Moving left using search

To move the element x at index i "left" to its correct position, remove it, start at position i-1, and search **from right to left** until we find the first element that is less than or equal to x.

Then insert x back into the list to the right of that element.

(The Python insert operation does not overwrite. Think of it as "squeezing into the list".)

Moving left (numbers)

Searching from right to left starting with 53, the first element less than 76 is 53. Insert 76 to the right of 53 (where it was before).

Searching from right to left starting with 76, all elements left of 14 are greater than 14. Insert 14 into position 0.

Searching from right to left starting with 91, the first element less than 68 is 53.

Insert 68 to the right of 53.

The move_left algorithm

Given a list a of length n, n > 0 and a value at

index *i* to be moved left in the list.

- 1. Remove a[i] from the list and store in x.
- 2. Set j = i-1.
- 3. While $j \ge 0$ and $a[j] \ge x$, subtract 1 from j.
- 4. (At this point, what do we know? Either j is ..., or a[j] is) Insert x into position a[j+1].

Removing a list element: pop

```
>>> a = ["Wednesday", "Monday", "Tuesday"]
>>> day = a.pop(1)
>>> a
['Wednesday', 'Tuesday']
>>> day
'Monday'
>>> day = a.pop(0)
>>> day
'Wednesday'
>>> a
['Tuesday']
```

Inserting an element: insert

Problems, Algorithms and Programs

One problem : potentially many algorithms

One algorithm : potentially many programs

We can compare how efficient different programs are both analytically and empirically

Analytically: Which One is Faster?

def contains1(items, key):

index = 0

while index < len(items):</pre>

if items[index] == key:

return True

index = index + 1

return False

len(items) is executed each time loop condition is checked def contains2(items, key):
 ln = len(items)
 index = 0
 while index < ln:
 if items[index] == key:
 return True
 index = index + 1</pre>

return False

len(items) is executed only
once and its value is stored in ln

Is a for-loop faster than a while-loop?

•Add the following function to our collection of contains functions from the previous page:

def contains3(items, key):
 for index in range(len(items)):
 if items[index] == key:
 return True
 return False

Empirical Measurement

- Three programs for the same algorithm; let's measure which is faster:
- Define time2 and time3 similarly to call contains2 and contains

```
import time
def time1(items, key) :
    start = time.time()
    contains1(items, key)
    runtime = time.time() - start
    print("contains1:", runtime)
```

Doing the measurement

Conclusion: using for and range() is faster than using while and addition when doing an unsuccessful search Why?

A Different Measurement

What if we want to know how the different loops perform when the key matches the first element?

contains3: 1.0013580322265625e-05

Now the relationship is different; contains 3 is slowest! Why?

Thinking like a computer scientist

Code Analysis

Efficiency

- A computer program should be correct, but it should also
 - execute as quickly as possible (time-efficiency)
 - use memory wisely (storage-efficiency)
- How do we compare programs (or algorithms in general) with respect to execution time?
 - various computers run at different speeds due to different processors
 - compilers optimize code before execution
 - the same algorithm can be written differently depending on the programming paradigm

Counting Operations

- We measure time efficiency by considering "work" done
 - Counting the number of operations performed by the algorithm.
- But what is an "operation"?
 - assignment statements
 - comparisons
 - function calls
 - return statements
- We think of an operation as any computation that is independent of the size of our input.

Think of it in a machine-independent way

Linear Search

```
# let n = the length of list.
def search(list, key):
    index = 0
    while index < len(list):
        if list[index] == key:
            return index
        index = index + 1
        return None
```

Linear Search: Best Case

```
# let n = the length of list.
def search(list, key):
  index = 0
                                           1
                                           1
  while index < len(list):
                                           1
     if list[index] == key:
                                           1
          return index
     index = index + 1
  return None
```

Total:4

Linear Search: Worst Case

```
# let n = the length of list.
def search(list, key):
    index = 0
    while index < len(list):
        if list[index] == key:
            return index
        index = index + 1
        return None
```

Worst case: the key is not an element in the list

Linear Search: Worst Case

```
# let n = the length of list.
def search(list, key):
  index = 0
                                          1
 while index < len(list):
                                          n+1
     if list[index] == key:
                                          n
          return index
     index = index + 1
                                          n
                                          1
  return None
                                          3n+3
                                Total:
```

Asymptotic Analysis

- How do we know that each operation we count takes the same amount of time?
 - We don't.

So generally, we look at the process more abstractly

- We care about the behavior of a program in the long run (on large input sizes)
- We don't care about constant factors (we care about how many iterations we make, not how many operations we have to do in each iteration)

What Do We Gain?

- Show important characteristics in terms of resource requirements
- Suppress tedious details
- Matches the outcomes in practice quite well
- As long as operations are faster than some constant (1 ns? 1 μs? 1 year?), it does not matter

Linear Search: Best Case Simplified

```
# let n = the length of list.
def search(list, key):
    index = 0
    while index < len(list): 1 iteration
        if list[index] == key:
            return index
        index = index + 1
    return None
```

Linear Search: Worst Case Simplified

Order of Complexity

- For very large n, we express the number of operations as the (time) order of complexity.
- For asymptotic upper bound, order of complexity is often expressed using <u>Big-O notation</u>:

Number of operations	Order of Complexity	
n	O(n)	
3n+3	O(n)	Usually doesn't matter what the constants are we are only
2n+8	O(n)	
		concerned about the highest power of n.

Why don't constants matter?

$$(n=1) 45n^3 + 20n^2 + 19 = 84$$

$(n=2) 45n^3 + 20n^2 + 19 = 459$

$(n=3) 45n^3 + 20n^2 + 19 = 1414$

O(n) ("Linear")

O(n)

O(1) ("Constant-Time")

Linear Search

Best Case: O(1)

Worst Case: O(n)

Average Case: ?
Depends on the distribution of queries
But can't be worse than O(n)

Insertion Sort

```
# let n = the length of list.
def isort(list):
```

```
i = 1
while i != len(list): n-1 iterations
    move_left(list, i)
    i = i + 1
return list
```

```
move left
# let n = the length of list.
def move left(a, i):
                                   at most
     x = a.pop(i)
     j = i - 1
     while j >= 0 and a[j] > x: i iterations
          j = j - 1
     a.insert(j + 1, x)
```

but how long do **pop** and **insert** take?

Measuring pop and insert

2 million elements in list, 1000 inserts:

4 million elements in list, 1000 inserts:

8 million elements in list, 1000 inserts:

8 million elements in list, 1000 pops:

16 million elements in list, 1000 pops:

32 million elements in list, 1000 pops:

0.7548720836639404 seconds

1.6343820095062256 seconds

3.327040195465088 seconds

2.031071901321411 seconds

4.033380031585693 seconds

8.06456995010376 seconds

Doubling the size of the list doubles the cost (time) of insert or pop. These functions take **linear time**.

move_left

Insertion Sort: what is the cost of move_left?

Total cost (at most): n + i + n

But what is i? To find out, look at isort, which calls move_left, supplying a value for i

Insertion Sort: what is the cost of the whole thing?

```
# let n = the length of list.
def isort(list):
    i = 1
    while i != len(list): #n-1 iterations
        move_left(list,i) #i goes from 1 to n-1
        i = i + 1
    return list
```

Total cost: cost of move left as i goes from 1 to n-1

Cost of all the move_lefts: n + 1 + n+ n + 2 + n+ n + 3 + n... + n + n - 1 + n

In place iSort Worst Case...

 On iteration i, we need to examine j elements and then shift i-j elements to the right, so we have to do j + (i-j) = i units of work.

Figuring out the sum

- □ n+1+n
- □ + n + 2 + n
- □ + n + 3 + n
- ...
- □ + n + n-1 + n

(n-1)*2n + 1 + 2 + 3 ... + n-1

Adding 1 through n-1

Adding 1 through n-1

Generalizing, 1 + 2 + ... + n-1 = (n-1)(n) / 2

So our whole cost is:

□ (n-1)*2n + 1 + 2 + 3 ... + n-1

```
\Box = (n-1)*2n + (n-1)(n) / 2
```

 $\Box = 2n^2 - 2n + (n^2 - n) / 2$

Observe that the highest-order term is n²

A different way...

- When i=1,we have1 unit of work.
- □ When i=2, we have 2 units of work.
- **—** ...
- \square When i = n-1, we have n-1 units of work.
- □ The total amount of work done is:

Order of Complexity

Number of operations	Order of Complexity	
n ²	O(n ²)	
(5/2)n ² - (1/2)n	O(n ²)	
2n ² + 7	O(n ²)	

Usually doesn't matter what the constants are... we are only concerned about the highest power of n.

f(n) is O(g(n)) means
f(n) < g(n) • k for some
positive k</pre>

Keep It Simple

- □ "Big O" notation expresses an upper bound: f(n) is O(g(n)) means $f(n) < g(n) \cdot k$ (whenever n is large enough)
- **So** if f(x) is $O(n^2)$, then f(x) is $O(n^3)$ too!
- But we always use the smallest possible function, and the simplest possible.
- U We say $3n^2 + 4n + 1$ is O(n^2), not O(n^3)
- We say $3n^2 + 4n + 1$ is $O(n^2)$, not $O(3n^2 + 4n)$
- ...even though all of the above are true

O(n²) ("Quadratic")

O(n²)

Insertion Sort

- Worst Case:O(n2)
- Best Case: ?
- Average Case: ?
- We'll compare these algorithms with others soon to see how scalable they really are based on their order of complexities.

Big O

