
Iteration:
Sorting, Scalability, Big O Notation

1

Announcements

¤ Yesterday?
¤ Lab 4

¤ Tonight
¤ Lab 5

¤ Tomorrow
¤ PS 4
¤ PA 4

Yesterday

¤ Quick Review: Sieve of Eratosthenes

¤ Character Comparisons (Unicode)

¤ Linear Search

¤ Sorting

Today

¤ Review: Insertion Sort

¤ Scalability

¤ Big O Notation

Sorting

5

In-place Insertion Sort

¤ Idea: during sorting, a prefix of the list is already sorted. (This
prefix might contain one, two, or more elements.)

¤ Each element that we process is inserted into the correct
place in the sorted prefix of the list.

¤ Result: sorted part of the list gets bigger until the whole
thing is sorted.

In-place Insertion Sort

sorted part

sorted part

In-place Insertion Sort

9

In-place Insertion Sort

sorted part

15110 Principles of Computing
Carnegie Mellon University

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort Algorithm
Given a list a of length n, n > 0.

1. Set i = 1.

2. While i is not equal to n, do the following:

a. Insert a[i] into its correct position in a[0] to a[i] (inclusive).

b. Add 1 to i.

3. Return the list a (which is now sorted).

Example

a = [53, 26, 76, 30, 14, 91, 68, 42]
i = 1

Insert a[1] into its correct position in a[0..1]
and then add 1 to i:

53 moves to the right,

26 is inserted into the list at position 0

a = [26, 53, 76, 30, 14, 91, 68, 42]

i = 2

Writing the Python code

def isort(items):

i = 1

while i < len(items):

move_left(items, i)

i = i + 1

return items

insert a[i] into a[0..i]
in its correct sorted
position

Moving left using search

To move the element x at index i �left� to its
correct position, remove it, start at position i-
1, and search from right to left until we find the
first element that is less than or equal to x.

Then insert x back into the list to the right of
that element.

(The Python insert operation does not
overwrite. Think of it as �squeezing into the
list�.)

76:

a = [26, 53, 76, 30, 14, 91, 68, 42]

Searching from right to left starting with 53, the first element less than 76 is 53.
Insert 76 to the right of 53 (where it was before).

14:

a = [26, 30, 53, 76, 14, 91, 68, 42]

Searching from right to left starting with 76, all elements left of 14 are greater
than 14. Insert 14 into position 0.

68:

a = [14, 26, 30, 53, 76, 91, 68, 42]

Searching from right to left starting with 91, the first element less than 68 is 53.

Insert 68 to the right of 53.

Moving left (numbers)

The move_left algorithm

Given a list a of length n, n > 0 and a value at

index i to be moved left in the list.

1.Remove a[i] from the list and store in x.

2.Set j = i-1.

3.While j >= 0 and a[j] > x, subtract 1 from j.

4. (At this point, what do we know? Either j is …,
or a[j] is …) Insert x into position a[j+1].

Removing a list element: pop

>>> a = ["Wednesday", "Monday", "Tuesday"]
>>> day = a.pop(1)
>>> a
['Wednesday', 'Tuesday']
>>> day
'Monday'
>>> day = a.pop(0)
>>> day
'Wednesday'
>>> a
['Tuesday']

Inserting an element: insert

>> a = [10, 20, 30]
=> [10, 20, 30]
>> a.insert(0, "foo")
=> ["foo", 10, 20, 30]
>> a.insert(2, "bar")
=> ["foo", 10, "bar", 20, 30]
>> a.insert(5, "baz")
=> ["foo", 10, "bar", 20, 30, "baz"]

move_left in Python

def move_left(items, i):

x = items.pop(i)

j = i - 1

while j >= 0 and items[j] > x:

j = j – 1

items.insert(j + 1, x)

Problems, Algorithms and Programs

¤ One problem : potentially many algorithms

¤ One algorithm : potentially many programs

¤ We can compare how efficient different programs are
both analytically and empirically

31

Analytically: Which One is Faster?

def contains1(items, key):

index = 0

while index < len(items):

if items[index] == key:

return True

index = index + 1

return False

def contains2(items, key):

ln = len(items)

index = 0

while index < ln:

if items[index] == key:

return True

index = index + 1

return False

32

¤ len(items) is executed each
time loop condition is checked

len(items) is executed only
once and its value is stored in ln

Is a for-loop faster than a while-loop?

33

•Add the following function to our collection of
contains functions from the previous page:

def contains3(items, key):
for index in range(len(items)):

if items[index] == key:
return True

return False

Empirical Measurement

¤ Three programs for the same algorithm; let’s measure which is faster:

¤ Define time2 and time3 similarly to call contains2 and contains

34

import time
def time1(items, key) :

start = time.time()
contains1(items, key)
runtime = time.time() - start
print("contains1:", runtime)

Doing the measurement
>>> items = [None] * 1000000

>>> time1(items1, 1)

contains1: 0.1731700897216797

>>> time2(items1, 1)

contains2: 0.1145467758178711

>>> time3(items1, 1)

contains3: 0.07184195518493652

Conclusion: using for and range() is faster than using
while and addition when doing an unsuccessful
search Why?

35

A Different Measurement
¤ What if we want to know how the different loops perform when the

key matches the first element?

>>> time1(items1, None)

contains1: 4.0531158447265625e-06

>>> time2(items1, None)

contains2: 4.291534423828125e-06

>>> time3(items1, None)

contains3: 1.0013580322265625e-05

Now the relationship is different; contains3 is
slowest! Why?

36

Thinking like a computer scientist
Code Analysis

Efficiency

¤ A computer program should be correct, but it should
also
¤ execute as quickly as possible (time-efficiency)
¤ use memory wisely (storage-efficiency)

¤ How do we compare programs (or algorithms in
general) with respect to execution time?
¤ various computers run at different speeds due to different

processors
¤ compilers optimize code before execution
¤ the same algorithm can be written differently depending

on the programming paradigm

Counting Operations
¤ We measure time efficiency by considering “work”

done
¤ Counting the number of operations performed by the

algorithm.

¤ But what is an “operation”?
¤ assignment statements
¤ comparisons
¤ function calls
¤ return statements

¤ We think of an operation as any computation that is
independent of the size of our input.

Think of it in a
machine-independent way

Linear Search

Best case: the key is the first
element in the list

let n = the length of list.
def search(list, key):

index = 0
while index < len(list):

if list[index] == key:
return index

index = index + 1
return None

Linear Search: Best Case

let n = the length of list.
def search(list, key):
index = 0 1
while index < len(list): 1

if list[index] == key: 1
return index 1

index = index + 1
return None

Total:4

Linear Search: Worst Case

Worst case: the key is not an
element in the list

let n = the length of list.
def search(list, key):
index = 0
while index < len(list):

if list[index] == key:
return index

index = index + 1
return None

Linear Search: Worst Case
let n = the length of list.
def search(list, key):
index = 0 1
while index < len(list): n+1

if list[index] == key: n
return index

index = index + 1 n
return None 1

Total: 3n+3

Asymptotic Analysis

¤How do we know that each operation we count takes
the same amount of time?
¤We don’t.

¤So generally, we look at the process more abstractly
¤We care about the behavior of a program in the long run (on

large input sizes)
¤We don’t care about constant factors (we care about how

many iterations we make, not how many operations we have
to do in each iteration)

What Do We Gain?
¤Show important characteristics in terms of resource

requirements

¤Suppress tedious details

¤Matches the outcomes in practice quite well

¤As long as operations are faster than some constant
(1 ns? 1 μs? 1 year?), it does not matter

Linear Search: Best Case
Simplified

let n = the length of list.
def search(list, key):
index = 0
while index < len(list): 1 iteration

if list[index] == key:
return index

index = index + 1
return None

Linear Search: Worst Case
Simplified

let n = the length of list.
def search(list, key):
index = 0
while index < len(list): n iterations

if list[index] == key:
return index

index = index + 1
return None

Order of Complexity

¤ For very large n, we express the number of operations
as the (time) order of complexity.

¤ For asymptotic upper bound, order of complexity is
often expressed using Big-O notation:
¤ Number of operations Order of Complexity
¤ n O(n)
¤ 3n+3 O(n)
¤ 2n+8 O(n)

Usually doesn't
matter what the
constants are...
we are only
concerned about
the highest power
of n.

Why don’t constants matter?

(n=1) 45n3 + 20n2 + 19 = 84

(n=2) 45n3 + 20n2 + 19 = 459

(n=3) 45n3 + 20n2 + 19 = 1414

O(n) (“Linear”)

n
(amount of data)

Number of
Operations

n3n+3
2n + 8

O(n)

n
(amount of data)

Number of
Operations

n

10 20 30

10

20

30 For a linear algorithm,
if you double the amount
of data, the amount of work
you do doubles
(approximately).

O(1) (“Constant-Time”)

n
(amount of data)

Number of
Operations

4
4 = O(1)

1
1 = O(1)

For a constant-time algorithm,
if you double the amount
of data, the amount of work
you do stays the same.

Linear Search

¤Best Case: O(1)

¤Worst Case: O(n)

¤Average Case: ?
¤Depends on the distribution of queries
¤ But can’t be worse than O(n)

Insertion Sort

let n = the length of list.
def isort(list):

i = 1
while i != len(list): n-1 iterations

move_left(list, i)
i = i + 1

return list

move_left

at most

let n = the length of list.
def move_left(a, i):

x = a.pop(i)
j = i - 1
while j >= 0 and a[j] > x: i iterations

j = j – 1
a.insert(j + 1, x)

but how long do pop and insert take?

Measuring pop and insert

Doubling the size of the list doubles the cost (time) of insert or pop. These functions
take linear time.

2 million elements in list, 1000 inserts: 0.7548720836639404 seconds

4 million elements in list, 1000 inserts: 1.6343820095062256 seconds

8 million elements in list, 1000 inserts: 3.327040195465088 seconds

8 million elements in list, 1000 pops: 2.031071901321411 seconds

16 million elements in list, 1000 pops: 4.033380031585693 seconds

32 million elements in list, 1000 pops: 8.06456995010376 seconds

move_left
let n = the length of list.
def move_left(a, i):

x = a.pop(i) n iterations
j = i - 1
while j >= 0 and a[j] > x: i iterations

j = j – 1
a.insert(j + 1, x) n iterations

Insertion Sort: what is the cost of
move_left?

let n = the length of list.
def move_left(a, i):

x = a.pop(i) n iterations
j = i - 1

while j >= 0 and a[j] > x: i iterations
j = j – 1

a.insert(j + 1, x) n iterations

Total cost (at most): n + i + n

But what is i? To find out, look at isort, which calls
move_left, supplying a value for i

Insertion Sort: what is the cost of
the whole thing?

let n = the length of list.

def isort(list):
i = 1
while i != len(list): #n-1 iterations

move_left(list,i) #i goes from 1 to n-1

i = i + 1
return list

Total cost: cost of move_left as i goes from 1 to n-1

Cost of all the move_lefts: n + 1 + n
+ n + 2 + n
+ n + 3 + n
...
+ n + n-1 + n

¤ • On iteration i, we need to examine j elements and then
shift i-j elements to the right, so we have to do j + (i-j) = i
units of work.

In place iSort Worst Case…

ij

Figuring out the sum

¤ n + 1 + n

¤ + n + 2 + n

¤ + n + 3 + n

¤ ...

¤ + n + n-1 + n

(n-1)*2n
+ 1
+ 2
+ 3
...
+ n-1

Adding 1 through n-1

1

2

3

4

5

6

1 2 3 4 5 6 7

(6 * 7) / 2
blue circles

Adding 1 through n-1

¤ We saw 1 + 2 + ... + 6 = (6 * 7) / 2

¤ Generalizing, 1 + 2 + ... + n-1 = (n-1)(n) / 2

¤ So our whole cost is:

¤ (n-1)*2n + 1 + 2 + 3 ... + n-1

¤ = (n-1)*2n + (n-1)(n) / 2

¤ = 2n2 - 2n + (n2 - n) / 2

¤ = (5n2 - 5n) / 2 = (5/2)n2 - (5/2)n

¤ Observe that the highest-order term is n2

A different way…

¤ When i=1,we have1 unit of work.

¤ When i=2, we have 2 units of work.

¤ ...

¤ When i = n-1, we have n-1 units of work.

¤ The total amount of work done is:

¤ 1 + 2 + ... + (n-1)
= n(n-1)/2
= (n2 - n)/2 (a quadratic function)
= O(n2)

Order of Complexity

Number of operations Order of Complexity
n2 O(n2)
(5/2)n2 - (1/2)n O(n2)
2n2 + 7 O(n2)

Usually doesn’t matter what
the constants are…
we are only concerned about
the highest power of n.

f(n) is O(g(n))means
f(n) < g(n)･k for some
positive k

Keep It Simple
¤“Big O” notation expresses an upper bound:
f(n) is O(g(n))means f(n) < g(n)･k
(whenever n is large enough)

¤So if f(x) is O(n2), then f(x) is O(n3) too!

¤But we always use the smallest possible function, and the
simplest possible.

¤We say 3n2 + 4n + 1 is O(n2), not O(n3)

¤We say 3n2 + 4n + 1 is O(n2), not O(3n2 + 4n)

¤...even though all of the above are true

O(n2) (“Quadratic”)

n
(amount of data)

Number of
Operations

n2/2 + 3n/2 – 1 2n2 + 7
n2

O(n2)

N
(amount of data)

Number of
Operations

10 20 30

100

400

900

N2

For a quadratic algorithm,
if you double the amount
of data, the amount of work
you do quadruples
(approximately).

Insertion Sort

¤ Worst Case: O(n2)

¤ Best Case: ?

¤ Average Case: ?

¤We’ll compare these algorithms with others soon to see how
scalable they really are based on their order of complexities.

Big O

¤ O(1) constant

¤ O(log n) logarithmic

¤ O(n) linear

¤ O(n log n) log linear

¤ O(n2) quadratic

¤ O(n3) cubic

¤ O(2n) exponential

