Iteration: Searching

(c) (1)

Announcements

- Questions?
- Lab 3
- PA 3
- OLI
- PS 3
- Tonight
- Lab 4
- Autograding:

Today

- Sieve of Erotosthenes (lists) review?
- Coding: Unicode
- Algorithm: linear (sequential) search
- Thinking about efficiency
- Algorithm: insertion sort

Algorithmic Thinking: Sieve of Erathosthenes

Do we need to review?

Prime Numbers

- An integer is "prime" if it is not divisible by any smaller integers except 1 .
- 10 is not prime because $10=2 \times 5$
- 11 is prime
- 12 is not prime because $12=2 \times 6=2 \times 2 \times 3$
- 13 is prime
- 15 is not prime because $15=3 \times 5$

The Sieve of Eratosthenes

Start with a table of integers from 2 to N .

Cross out all the entries that are divisible by the primes known so far.

The first value remaining is the next
 prime.

Finding Primes Between 2 and 50

$$
\begin{array}{cccccccccc}
& 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50
\end{array}
$$

2 is the first prime

Finding Primes Between 2 and 50

$$
\begin{array}{cccccccccc}
& 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50
\end{array}
$$

Filter out everything divisible by 2.
Now we see that 3 is the next prime.

Finding Primes Between 2 and 50

$$
\begin{array}{cccccccccc}
& \mathbf{2} & \mathbf{3} & 4 & \mathbf{5} & 6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50
\end{array}
$$

Filter out everything divisible by 3.
Now we see that 5 is the next prime.

Finding Primes Between 2 and 50

$$
\begin{array}{cccccccccc}
& \mathbf{2} & \mathbf{3} & 4 & \mathbf{5} & 6 & \mathbf{7} & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50
\end{array}
$$

Filter out everything divisible by 5. Now we see that 7 is the next prime.

Finding Primes Between 2 and 50

$$
\begin{array}{lcccccccccc}
& \mathbf{2} & \mathbf{3} & 4 & \mathbf{5} & 6 & \mathbf{7} & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50
\end{array}
$$

Filter out everything divisible by 7. Now we see that 11 is the next prime.

Finding Primes Between 2 and 50

$$
\begin{array}{lcccccccccc}
& \mathbf{2} & \mathbf{3} & 4 & \mathbf{5} & 6 & \mathbf{7} & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50
\end{array}
$$

Since $11 \times 11>50$, all remaining numbers must be primes. Why?

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n, in order. (Assume $n>1$.)
2. Create an empty list primes.
3. For each element in numlist
a. If element is not marked, copy it to the end of primes.
b. Mark every number that is a multiple of the most recently discovered prime number.

Output: The list of all prime numbers less than or equal to n

Automating the Sieve

numlist

primes

Use two lists: candidates, and confirmed primes.

Steps 1 and 2

numlist

$$
\begin{array}{rrrr}
2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 \\
10 & 11 & 12 & 13
\end{array}
$$

primes

Step 3a

numlist

primes

Append the current number in numlist to the end of primes.

Step 3b

numlist

primes

Cross out all the multiples of the لast number in primes.

Iterations

numlist

primes

Append the current number in numlist to the end of primes.

Iterations

numlist

\section*{| 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: |
| 6 | 7 | 8 | 9 |
| 10 | 11 | $x 2$ | 13 |
| \cdots | | | |}

primes

23

Cross out all the multiples of the_dast number in primes.

Iterations

numlist

primes

Append the current number in numlist to the end of primes.

Iterations

numlist

primes

235

Cross out all the multiples of the_dast number in primes.

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n, in order. (Assume $n>1$.)
2. Create an empty list primes.
3. For each element in numlist
a. If element is not marked, copy it to the end of primes.
b. Mark every number that is a multiple of the most recently discovered prime number.

Output: The list of all prime numbers less than or equal to n

Implementation Decisions

- How to implement numlist and primes?
- For numlist we will use a list in which crossed out elements are marked with the special value None. For example,
[None, 3, None, 5, None, 7, None]
- Use a helper function to mark the multiples, step 3.b. We will call it sift.

Relational Operators

- If we want to compare two integers to determine their relationship, we can use these relational operators:
$<$ less than $<=$ less than or equal to
$>$ greater than >= greater than or equal to
$==$ equal to != not equal to
- We can also write compound expressions using the Boolean operators and and or.
$x>=1$ and $x<=1$

Siffing: Removing Multiples of a Number

def sift(lst,k):

\# marks multiples of k with None
i $=0$
while i < len(lst):
if lst[i] != None and lst[i] \% $k==0:$ lst[i] = None
$i=i+1$
return lst

Filters out the multiples of the number k from list by marking them with the special value None (greyed out ones).

Siffing: Removing Multiples of a Number (Alternative version)

```
def sift2(lst,k):
    i = 0
while i < len(lst):
    if lst[i] % k == 0:
        lst.remove(lst[i])
        else:
        i = i + 1
    return lst
```

Filters out the multiples of the number k from list by modifying the list. Be careful in handling indices.

A Working Sieve

def sieve(n):

Use the first version of sift in this function, which does the filtering using Nones.
numlist $=$ list(range(2, $n+1)$)
primes = []
for i in range(0, len(numlist)):
if numlist[i] != None:
primes.append(numlist[i]) sift(numlist, numlist[i]) return priys

```
We could haveusud primes[len(primes)-1] instead.
```

Helper function that we defined before

Observation for a Better Sieve

We stopped at 11 because all the remaining entries must be prime since $11 \times 11>50$.

$$
\begin{array}{lllllllll}
\mathbf{2} & \mathbf{3} & 4 & \mathbf{5} & 6 & \mathbf{7} & 8 & 9 & 10 \\
\mathbf{1 1} & 12 & \mathbf{1 3} & 44 & 15 & 16 & \mathbf{1 7} & 18 & \mathbf{1 9}
\end{array} 20
$$

A Better Sieve

def sieve(n):
numlist $=$ list(range(2, $n+1)$)
primes $=$ []
i $=0$ \# index 0 contains number 2
while (i+2) <= math.sqrt(n):
if numlist[i] != None:
primes.append(numlist[i])
sift(numlist, numlist[i])
$i=i+1$
return primes + numlist

Strings and Unicode

Strings and Unicode

- You can use relational operators to compare strings: <, <=, >, >=, ==, !=
- How can that be? Characters are coded as numbers.
- Strings of characters are coded as sequences of numbers
\square Sequences are compared using rules of alphabetical order ("lexicographical order")

String comparisons

Unicode

- Codes 48...57: digits 0 through 9
- Codes 65...91: A through Z
- Codes 97...122: a through z
- Other numbers: various special characters

Unicode in hexadecimal: $00-7 F_{16}$

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	(@)	P	-	p
1	SOH	$\begin{aligned} & \mathrm{DC1} \\ & \mathrm{XON} \end{aligned}$!	1	A	Q	a	q
2	STX	DC2	"	2	B	R	b	「
3	ETX	$\begin{aligned} & \mathrm{DC}_{3} \\ & \text { XOFF } \end{aligned}$	\#	3	C	S	C	S
4	EOT	DC4	\$	4	D	T	d	t
5	ENQ	NAK	\%	5	E	U	e	u
6	ACK	SYN	\&	6	F	V	f	V
7	Bel	ETB	'	7	G	W	g	W
8	BS	CAN	$($	8	H	X	h	X
9	HT	EM)	9	1	Y	i	y
A	LF	Sue	=	:	J	Z	j	z
B	VT	ESC	+	;	K	[k	\{
C	FF	FS	,	$<$	L	1	I	1
D	CR	QS	-	$=$	M]	m	\}
E	so	RS	.	$>$	N	A	n	\sim
F	SI	US	I	?	O	-	0	del

Some non-printing characters:
08 - back space
09 - horizontal tab
0A - newline character (in Python)
These are only the first 128 codes in the Unicode standard.

Chosen to correspond to the entire set of codes in the older ASCII standard.
from ascii-table.com

Roman alphabet

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
32	20	Space	64	40	(19)	96	60	
33	21	!	65	41	A	97	61	a
34	22	\cdots	66	42	B	98	62	b
35	23	\#	67	43	C	99	63	
36	24	\$	68	44	D	100	64	d
37	25	\%	69	45	E	101	65	e
38	26	\&	70	46	F	102	66	f
39	27		71	47	G	103	67	g
40	28	(72	48	H	104	68	h
41	29)	73	49	1	105	69	i
42	2A	*	74	4A	J	106	6 A	,
43	2B	+	75	4B	K	107	6B	k
44	2 C	,	76	4 C	L	108	6C	1
45	2 D	-	77	4D	M	109	6D	m
46	2 E	.	78	$4 E$	N	110	6E	n
47	2 F	1	79	$4 F$	0	111	6F	0
48	30	0	80	50	P	112	70	p
49	31	1	81	51	Q	113	71	q
50	32	2	82	52	R	114	72	r
51	33	3	83	53	S	115	73	5
52	34	4	84	54	T	116	74	t
53	35	5	85	55	U	117	75	u
54	36	6	86	56	V	118	76	v
55	37	7	87	57	W	119	77	w
56	38	8	88	58	X	120	78	\times
57	39	9	89	59	Y	121	79	y
58	3A	:	90	54	z	122	7A	2
59	38	;	91	5B	[123	7B	\{
60	3 C	$<$	92	5C	\backslash	124	7 C	I
61	3 D	$=$	93	5D]	125	7D	\}
62	3 E	>	94	5E	\wedge	126	7E	\sim
63	3 F	?	95	5F		127	7F	DEL

...but many others!

> a unicode video: hto://vimeocom/48858289 109,242 characters/codes in 2 hours, 31 mintes, and 25 seconds Amazingly, everything after around $14: 00$ seems to be (Chinese) ideographs!

Onward to search

more later on encodings, now

Searching, we use it

Built-in Search in Python

>>> movies = ["The Wolf of Wall Street", "American Hustle", "Frozen", "Her", "Lone Survivor", "12 Years a Slave", "Nosferatu", "Arnacoeur", "Sullivan's Travels", "Last Jedi"]
>>> "American Hustle" in movies
True
>>> "American" in movies
False
>>> movies.index("Frozen")
2
>>> movies.index("Lone")
ValueError: 'Lone' is not in list

Let's Write Our Own Search

- Method contains(items, key)
\square Input: items to be searched (could be strings or numbers or ...)
- Input: key to search for
- Output: True or False
\square Approach: think linearly

Not thinking linearly...

ato ?

Not thinking linearly...

Thinking linearly...

?

 ab
Thinking linearly...

Thinking linearly...

!

A contains() method

def contains(items, key):
for index in range(len(items))
if items[index] $==$ key:
return True
return False

Another contains() method

def contains(items, key):
for item in items:

$$
\begin{array}{r}
\text { if item }==\text { key: } \\
\text { return True }
\end{array}
$$

return False

Getting More Information

- Method search(items, key)
- Input: list to be searched (could be strings or numbers or ...)
- Input: key to search for
\square Output: index of the first member of the list that matches the key, or None if the key isn't in the list (instead of True or False)

Search using a for-loop

def search(items, key):

$$
\begin{aligned}
& \text { for index in range(len(items)) } \\
& \text { if items[index] == key: } \\
& \text { return index } \\
& \text { return None }
\end{aligned}
$$

Alternatively?

def search(items, key):

for item in items:
if item == key:
return index \longleftarrow Why can't we
return None do this?

Ok, but...

def search(items, key):
for item in items:
if item == key:
return items.index(key)
return None about this?

Be aware of the cost of the things Python does for you "behind the scenes"!

Problems, Algorithms and Programs

- One problem : potentially many algorithms
- One algorithm : potentially many programs
- We can compare how efficient different programs are both analytically and empirically

Analytically: Which One is Faster?

def containsl(items, key):

```
index = 0
while index < len(items):
    if items[index] == key:
    return True
    index = index + 1
return False
```

len(items) is executed each time loop condition is checked
def contains2(items, key):

```
ln = len(items)
index = 0
while index < ln:
    if items[index] == key:
    return True
    index = index + 1
return False
```

len (items) is executed only once and its value is stored in \ln

Is a for-loop faster than a while-loop?

-Add the following function to our collection of contains functions from the previous page:
def contains3(items, key):
for index in range(len(items)):
if items[index] == key:
return True
return False

Empirical Measurement

- Three programs for the same algorithm; let's measure which is faster:
- Define time 2 and time 3 similarly to call contains2 and contains

```
import time
def timel(items, key) :
    start = time.time()
    containsl(items, key)
    runtime = time.time() - start
    print("containsl:", runtime)
```


Doing the measurement

```
>>> items = [None] * 1000000
>>> timel(items1, 1)
while loop
contains1: 0.1731700897216797
>>> time2(items1, 1)
while loop with
    saved length
contains2: 0.1145467758178711
>>> time3(items1, 1)
for loop
contains3: 0.07184195518493652
```

Conclusion: using for and range () is faster than using while and addition when doing an unsuccessful search Why?

A Different Measurement

- What if we want to know how the different loops perform when the key matches the first element?
>>> timel(items1, None)
while loop
contains1: 4.0531158447265625e-06
>>> time2(items1, None)

Now the relationship is different; contains3 is slowest! Why?

Sorting

In-place Insertion Sort

- Idea: during sorting, a prefix of the list is already sorted. (This prefix might contain one, two, or more elements.)
- Each element that we process is inserted into the correct place in the sorted prefix of the list.
- Result: sorted part of the list gets bigger until the whole thing is sorted.

In-place Insertion Sort

\downarrow

In-place Insertion Sort

In-place Insertion Sort

In-place Insertion Sort

In-place Insertion Sort

In-place Insertion Sort

In-place Insertion Sort

In-place Insertion Sort

\downarrow

In-place Insertion Sort

\downarrow
 ,

In-place Insertion Sort

In-place Insertion Sort

In-place Insertion Sort

In-place Insertion Sort

In-place Insertion Sort

- a der red
sorted part

In-place Insertion Sort

sorted part

In-place Insertion Sort Algorithm

Given a list a of length $n, n>0$.

1. Set $i=1$.
2. While i is not equal to n, do the following:
a. Insert $a[i]$ into its correct position in $a[0]$ to $a[i]$ (inclusive).
b. Add 1 to i.
3. Return the list a (which is now sorted).

Example

$$
\begin{aligned}
& \mathrm{a}=[53,26,76,30,14,91,68,42] \\
& \mathrm{i}= \\
& \text { Insert a[1] nto its correct position in a }[0 . .1] \\
& \text { and the add } 1 \text { to i: } \\
& 53 \text { move to the right, } \\
& 26 \text { is inserfed into the list at position } 0 \\
& \mathrm{a}=[26,53,76,30,14,91,68,42] \\
& \mathrm{i}= \\
& 2
\end{aligned}
$$

Writing the Python code

def isort(items):
$i=1$
while i < len(items):

$$
\begin{aligned}
& \text { move_left(items, i). } \\
& i=i+1
\end{aligned}
$$

insert a[i] into a[0.i] in its correct sorted position
return items

But now we have to write the move_left function!

Moving left using search

To move the element x at index i "left" to its correct position, remove it, start at position i1, and search from right to left until we find the first element that is less than or equal to x.

Then insert x back into the list to the right of that element.
(The Python insert operation does not overwrite. Think of it as "squeezing into the list".)

move_left via linear search

In-place Insertion Sort

Moving left (numbers)

Searching from right to left starting with 53, the first element less than 76 is 53. Insert 76 to the right of 53 (where it was before).

14 :
$a=[26,30,53,76,14,91,68,42]$
Searching from right to left starting with 76, all elements left of 14 are greater than 14. Insert 14 into position 0.

68 :
$a=[14,26,30,53,76,91,68,42]$
Searching from right to left starting with 91, the first element less than 68 is 53.
Insert 68 to the right of 53 .

The move_left algorithm

Given a list a of length $n, n>0$ and a value at index i to be moved left in the list.

1. Remove a[i] from the list and store in x.
2. Set $j=i-1$.
3. While $j>=0$ and $a[j]>x$, subtract 1 from j.
4. (At this point, what do we know? Either \boldsymbol{j} is ..., or $a[j]$ is ...) Insert x into position $a[j+1]$.

From algorithm to code

- Our algorithm says to "remove" and "insert" elements of a list.
- But how do we do that?
- Fortunately there are built-in Python operations for that.

Removing a list element: pop

```
>>> a = ["Wednesday", "Monday", "Tuesday"]
>>> day = a.pop(1)
>>> a
['Wednesday', 'Tuesday']
>>> day
'Monday'
>>> day = a.pop(0)
>>> day
'Wednesday'
>>> a
['Tuesday']
```


Inserting an element: insert

$$
\begin{aligned}
& \gg a=[10,20,30] \\
& =>[10,20,30] \\
& >\text { a.insert(0, "foo") } \\
& =>[\text { foo", } 10,20,30] \\
& >\text { a.insert(2, "bar") } \\
& \Rightarrow \text { "foo", } 10, \text { "bar", } 20,30] \\
& >\text { a.insert(5, "baz") } \\
& =>[" f o o ", 10, " b a r ", 20,30, " b a z "]
\end{aligned}
$$

move_left in Python

def move_left(items, i):
x $=$ items.pop(i)
$j=i-1$
while $j>=0$ and items[j] $>\mathrm{x}$:

$$
j=j-1
$$

items.insert(j +1 , x)

Insertion sort with a bug

def move_left(items, i):
\# Insert the element at items[i] into its place

$$
\begin{aligned}
& x=\text { items.pop(i) } \\
& j=i=1 \\
& \text { while } \gg 0 \text { and items[j] > } x: \\
& \quad j=j-1
\end{aligned}
$$

items.insert(j + 1, x)
def isort(items):
\# In-place insertion sort
i $=1$
while i < len(items):
move_left(items, i)
i $=$ i +1
return items

Why should we believe our code works?

- We can test it:

```
>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)
[13, 12, 18, 25, 78, 89, 100]
>>>
```

- Hmmmm. What went wrong?

Using assert to debug

- What do we know has to be true for move_left to do the right thing?
- We have a loop that decreases jand checks for an element at index j smaller than or equal to x. When should it stop looping?
- When the value of j is -1 ,
- or when the item at index j is $<=\mathrm{x}$
(\mathbf{j} == -1 or items[j] <= x

So add an assertion to the code

def move_left(items, i):
\# Insert the element at items[i] into its place

$$
\begin{aligned}
& x=\text { items.pop(i) } \\
& j=i-1 \\
& \text { while } \gg 0 \text { and items[j] > x: } \\
& \quad j=j-1
\end{aligned}
$$

assert(j == -1 or items[j] <= x)
items.insert(j + 1, x)
def isort(items):
\# In-place insertion sort
i $=1$
while i < len(items):
move_left(items, i)
i $=i+1$
return items

Run the same test again

```
>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)
[13, 12, 18, 25, 78, 89, 100]
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    File "isort.py", line 16, in isort
        move_left(items, i)
    File "isort.py", line 7, in move_left
        assert(j == -1 or items[j] <= x)
AssertionError
```

This tells us we did something wrong with the loop!

Where's the bug?

def move_left(items, i):
\# Insert the element at items[i] into its place

$$
\begin{aligned}
& \mathrm{x}=\mathrm{items} \cdot \operatorname{pop}(\mathrm{i}) \\
& \mathrm{j}=\mathrm{i}-1 \\
& \text { while } \mathrm{j}>0 \text { and items }[j]>\mathrm{x}: \\
& \quad j=j-1
\end{aligned}
$$

assert(j == -1 or items[j] <= x) items.insert(j + 1, x)
def isort(items):
\# In-place insertion sort
i $=1$
while i < len(items):
move_left(items, i)
$i=i+1$
return items

The fix

```
def move_left(items, i):
    # Insert the element at items[i] into its place
    x = items.pop(i)
    j = i - 1
    while j >= 0 and items[j] > x:
        j = j - 1
    assert(j == -1 or items[j] <= x)
    items.insert(j + 1, x)
def isort(items):
    # In-place insertion sort
    i = 1
    while i < len(items):
        move_left(items, i)
        i}=\overline{i}+
    return items
```


Run the same test again

```
>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)
[12, 13, 18, 25, 78, 89, 100]
Hurray!
```

Do we know for sure that the program will always do the right thing now?

