Algorithmic Thinking: Computing with Lists

Announcements

- Tonight ($10^{\text {th }}$):
- Lab 3
- PA 3
- OLI
- Tomorrow (11 $1^{\text {th }}$)
- PS3
- Lab 4

Any Confusion

- Print vs Return:
def ?????? ($a, b): \quad$ def ? ?????? $(a, b):$
result = a + b
print (result)
result = a + b
return (result)
- Between data types:
" $3+5$ " vs $3+5$
" 3 " * 3 vs 3 * 36 * 5 vs 6 * 5.0
- Variables:
output = "hello"
print(output) vs print("hello") vs print(hello)

So Far in Python

- Data types: int, float, Boolean, string
- Assignments, function definitions
- Control structures: For loops, while loops, conditionals
\square Accumulating output

Otto's Farm

This Lecture

- More algorithmic thinking
- Example: Finding the maximum in a list
- Composite (structured) data type: lists
- Storing and accessing data in lists
- Modifying lists
- Operations on lists
- Iterating over lists

Reviewing while loops

$$
\begin{aligned}
& \text { \# example to illustrate while loops } \\
& \text { def print_yes(num) } \\
& \text { i = } 1 \\
& \text { while i < num: } \\
& \quad \text { print("iteration:", i, i * "Yes") } \\
& \quad i=i+1
\end{aligned}
$$

 return None
 >>> print_yes(10)
 iteration: 1 Yes
iteration: 2 YesYes
iteration: 3 YesYesYes
iteration: 4 YesYesYesYes
iteration: 5 YesYesYesYesYes
iteration: 6 YesYesYesYesYesYes
iteration: 7 YesYesYesYesYesYesYes
iteration: 8 YesYesYesYesYesYesYesYes
iteration: 9 YesYesYesYesYesYesYesYesYes

Exercise:
Do the same thing with a for loop.

Example: Finding the maximum

How do we find the maximum in a sequence of integers shown to us one at a time?

What's the maximum?

Example: Finding the maximum

Input: a non-empty list of integers.

1. Set max_so far to the first number in list.
2. For each number n in list:
a. If n is greater than max_so_far,

Loop then set max_so far to n.

Output: max_so_far as the maximum of the list.

Representing Lists in Python

We will use a list to represent a collection of data values.

$$
\begin{aligned}
& \text { scores }=[78,93,80,68,100,94,85] \\
& \text { colors }=[‘ r e d \prime, ~ ' g r e e n ', ~ ‘ b l u e '] ~ \\
& \text { mixed }=[' p u r p l e ', ~ 100, ~ 90.5]
\end{aligned}
$$

A list is an ordered sequence of values and may contain values of any data type.

In Python lists may be heterogeneous (may contain items of different data types).

Some List Operations

- Indexing (think of subscripts in a sequence)
- Length (number of items contained in the list)
- Slicing
- Membership check
- Concatenation
- ...

Some List Operations

```
>>> names = ["Al", "Jane", "Jill","Mark"]
>>> len(names)
4
>>> Al in names
error ... Al is not defined
>>> "Al" in names
True
>>> names + names
    ["Al", "Jane", "Jill", "Mark", "Al", "Jane", "Jill",
        "Mark"]
```


Accessing List Elements

| "Al" | "Jane" | "Jill" | "Mark" |
| :---: | :---: | :---: | :---: |\quad| list elements |
| :--- |
| 0 |

>>> names[0]
'Al'
>>> names[4]
>>> names[3]
'Mark'
>> names[len(names)-1]

Traceback (most recent call last):
File "<pyshell\#8>", line 1, in <module> names[4]
IndexError: list index out of range

Slicing Lists

| "Al" | "Jane" | "Jill" | "Mark" |
| :---: | :---: | :---: | :---: |\quad| list elements |
| :--- |
| 0 | $11 \quad 2 \quad 3 \quad$ indices

```
>>> names[1:3] \longleftarrow slice
    ['Jane', 'Jill']
    >>> names[0:4:2] « incremental slice
    ['Al', 'Jill']
    >>> names[:4]
    ['Al', 'Jane', 'Jill', 'Mark']
    >>> names[:2]
    ['Al', 'Jane']
    >>> names[2:]
    [‘Jill', 'Mark']
```

Operation	Result
x in s	True if an item of s is equal to x, else False
x not in s	False if an item of s is equal to x, else True
$s+\mathrm{t}$	the concatenation of s and t
$s * \mathrm{n}, \mathrm{n} * \mathrm{~s}$	n shallow copies of s concatenated
$s[i]$	ith item of s, origin 0
$s[i: j]$	slice of s from i to j
$s[i: j: k]$	slice of s from i to j with step k
len(s)	length of s
min(s)	smallest item of s
max (s)	largest item of s
$s . i n d e x(i)$	index of the first occurence of i in s
$s . c o u n t(i)$	total number of occurences of i in s

source: docs.python.org

Modifying Lists

>>> names $=$ ['Al', 'Jane', 'Jill', 'Mark']
>>> names[1] = "Kate"
>>> names
['Al', 'Kate', 'Jill', 'Mark']
>>> names[1:3] = ["Me","You"]
>>> names
['Al', 'Me', 'You', 'Mark']
>>> names[1:3] = ["Me","Me","Me","Me"]
['Al', 'Me', 'Me', 'Me', 'Me', 'Mark']
The list grew in length, we could make it shrink as well.

Operation	Result
$s[i]=x$	item i of s is replaced by x
$s[i: j]=t$	slice of s from i to j is replaced by the contents of the iterable t
del $s[i: j]$	same as $s[i: j]=[]$
$s[i: j: k]=t$	the elements of $s[i: j: k]$ are replaced by those of t
del s[i:j:k]	removes the elements of $s[i: j: k]$ from the list
$s . a p p e n d(x)$	same as $s[l e n(s): l e n(s)]=[x]$
$s . e x t e n d(x)$	same as $s[l e n(s): l e n(s)]=x$

Aliasing

```
>>> west = ["CA", "OR"]
>>> east = ["NY", "MA"]
>>> all = [west, east]
>>> all
[["CA", "OR"],["NY", "MA"]]
```

There are two paths to the list containing state names in the West Coast.

- One through the variable west.
- The other through the variable all (namely, all[0]).

This is called aliasing.

Mutability Requires Caution

>>> west = ["CA", "OR"]
>>> east = ["NY", "MA"]
>>> all = [west, east]
>>> west.append("WA")
All variables that are bound to the modified object change in value.
>>> all
[['CA', 'OR', 'WA'], ['NY', 'MA']]

Creating Copies

>>> west = ["CA", "OR"]
>>> east = ["NY", "MA"]
>>> all2 = [west[:], east[:]]
>>> all2 Creates a shallow copy.
>>> [["CA", "OR"], ["NY", "MA"] If list items were mutable objects, as opposed to strings as we have here,
No matter how I modify west, all2 will not see it. we would have needed something more.
Don't worry about it now.

Iterating over Lists

```
def print_colors(colors):
    for i in range(0, len(colors)):
    print(colors[i])
```

>>> print_colors(["red", "blue", "green"])
red
blue
green

Alternative Version

```
def print_colors(colors):
    for c in colors:
```



```
def print_colors(colors):
```

def print_colors(colors):
for i in range(0, len(colors)):
for i in range(0, len(colors)):
print(colors[i])

```
    print(colors[i])
```

Python binds c to the first item in colors, then execute the statement in the loop body, binds c to the next item in the list colors etc.

Finding the max using Python

def findmax(list):
max_so_far = list[0] \# set max_so_far to the first item
for i in range(1,len(list)): \#check all the following items

$$
\begin{array}{cl}
\text { if list[i] }>\text { max_so_far: } & \text { \# if you find a bigger value } \\
& \text { \# update max_so_far }
\end{array}
$$

return max_so_far

Alternative Version

 def findmax(list):max_so_far = list[0]
"For each item in the list..."
for item in list:

> if item > max_so_far:
max_so_far = item
return max_so_far

Summary

\square The list data type (ordered and dynamic collections of data)

- Creating lists
- Accessing elements
- Modifying lists
- Iterating over lists

Algorithmic Thinking: Sieve of Erathosthenes

A 2000 year old algorithm (procedure) for generating a table of prime numbers.
$2,3,5,7,11,13,17,23,29,31, \ldots$

Prime Numbers

- An integer is "prime" if it is not divisible by any smaller integers except 1 .
- 10 is not prime because $10=2 \times 5$
- 11 is prime
- 12 is not prime because $12=2 \times 6=2 \times 2 \times 3$
- 13 is prime
- 15 is not prime because $15=3 \times 5$

Testing Divisibility in Python

$\square \mathrm{x}$ is "divisible by" y if the remainder is 0 when we divide x by y

- 15 is divisible by 3 and 5 , but not by 2 :
>> $15 \% 3$
0
>> $15 \% 5$
0
>> 15 \% 2
1

What Is a "Sieve" or "Siffer"?

Separates stuff you want from stuff you don't:

We want to separate prime numbers.

The Sieve of Eratosthenes

Start with a table of integers from 2 to N .

Cross out all the entries that are divisible by the primes known so far.

The first value
remaining is the next
 prime.

Finding Primes Between 2 and 50

$\begin{array}{lllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
11121314151617181920
21222324252627282930
31323334353637383940
41424344454647484950

2 is the first prime

Finding Primes Between 2 and 50

$$
\begin{array}{rrrrrrrrr}
\mathbf{2} & \mathbf{3} & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
11 & 1213 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 \\
30 \\
3132 & 33 & 35 & 36 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49
\end{array}
$$

Filter out everything divisible by 2. Now we see that 3 is the next prime.

Finding Primes Between 2 and 50

$$
\begin{array}{cccccccccc}
& \mathbf{2} & \mathbf{3} & 4 & \mathbf{5} & 6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50
\end{array}
$$

Filter out everything divisible by 3. Now we see that 5 is the next prime.

Finding Primes Between 2 and 50

$$
\begin{array}{cccccccccc}
& \mathbf{2} & \mathbf{3} & 4 & \mathbf{5} & 6 & \mathbf{7} & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50
\end{array}
$$

Filter out everything divisible by 5. Now we see that 7 is the next prime.

Finding Primes Between 2 and 50

$$
\begin{array}{cccccccccc}
& \mathbf{2} & \mathbf{3} & 4 & \mathbf{5} & 6 & \mathbf{7} & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50
\end{array}
$$

Filter out everything divisible by 7. Now we see that 11 is the next prime.

Finding Primes Between 2 and 50

$$
\begin{array}{cccccccccc}
& \mathbf{2} & \mathbf{3} & 4 & \mathbf{5} & 6 & \mathbf{7} & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50
\end{array}
$$

Since $11 \times 11>50$, all remaining numbers mus \dagger be primes. Why?

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n , in order. (Assume $n>1$.)
2. Create an empty list primes.
3. For each element in numlist
a. If element is not marked, copy it to the end of primes.
b. Mark every number that is a multiple of the most recently discovered prime number.

Output: The list of all prime numbers less than or equal to n

Automating the Sieve

numlis \dagger

primes

Use two lists: candidates, and confirmed primes.

Steps 1 and 2

numlist
primes

2	3	4	5
6	7	8	9
10	11	12	13
\cdots			

Step 3a

numlist

primes

Append the current number in numlist to the end of primes.

Step 3b

numlist

primes

Cross out all the multiples of the last number in primes.

Iterations

numlist
 primes

Append the current number in numlist to the end of primes.

Iterations

numlis \dagger

primes

Cross out all the multiples of the last number in primes.

Iterations

numlist

primes

Append the current number in numlist to the end of primes.

Iterations

numlist

primes

Cross out all the multiples of the last number in primes.

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n , in order. (Assume $n>1$.)
2. Create an empty list primes.
3. For each element in numlist
a. If element is not marked, copy it to the end of primes.
b. Mark every number that is a multiple of the most recently discovered prime number.

Output: The list of all prime numbers less than or equal to n

Implementation Decisions

- How to implement numlist and primes?
- For numlist we will use a list in which crossed out elements are marked with the special value None. For example,

[None, 3, None, 5, None, 7, None]

- Use a helper function to mark the multiples, step 3.b. We will call it sift.

Relational Operators

- If we want to compare two integers to determine their relationship, we can use these relational operators:
$\begin{array}{lll}< & \text { less than } & <= \\ > & \text { less than or equal to } \\ >= & \text { greater than } & >= \\ \text { equal to } & \text { != } & \text { greater than or equal to } \\ \text { not equal to }\end{array}$
- We can also write compound expressions using the Boolean operators and and or.
$x>=1$ and $x<=1$

Siffing: Removing Multiples of a Number

```
def sift(lst,k):
    # marks multiples of k with None
    i = 0
    while i < len(lst):
        if lst[i] != None and lst[i] % k == 0:
        lst[i] = None
        i = i + 1
    return lst
```

Filters out the multiples of the number k from list by marking them with the special value None (greyed out ones).

Siffing: Removing Multiples of a Number (Alternative version)

```
def sift2(lst,k):
    i = 0
    while i < len(lst):
        if lst[i] % k == 0:
        lst.remove(lst[i])
        else:
        i = i + 1
    return lst
```

Filters out the multiples of the number k from list by modifying the list. Be careful in handling indices.

A Working Sieve

def sieve(n):

Use the first version of sift in this function, which does the filtering using Nones.

$$
\text { numlist }=\text { list(range(2, } n+1) \text {) }
$$

primes = []
for i in range(0, len(numlist)): if numlist[i] != None:
primes.append(numlist[i]) sift(numlist, numlist[i])
return primes
We could have used primes[len(primes)-1] instead.

Helper function that we defined before

Observation for a Better Sieve

We stopped at 11 because all the remaining entries must be prime since $11 \times 11>50$.

$$
\begin{array}{ccccccccc}
\mathbf{2} & \mathbf{3} & 4 & \mathbf{5} & 6 & \mathbf{7} & 8 & 9 & 10 \\
\mathbf{1 1} & 12 & \mathbf{1 3} & 14 & 15 & 16 & \mathbf{1 7} & 18 & \mathbf{1 9}
\end{array} 20
$$

A Better Sieve

def sieve(n):
numlist $=$ list(range(2, $n+1)$)
primes = []
i $=0$ \# index 0 contains number 2
while (i+2) $<=$ math.sqrt(n):
if numlist[i] != None:
primes.append(numlist[i]) sift2(numlist, numlist[i])
$i=i+1$
return primes + numlist

Algorithm-Inspired Sculpture

The Sieve of Eratosthenes, 1999 sculpture by Mark di Suvero. Displayed at Stanford University.

Otto's Farm

Otto's new farm

Otto has found a new passion: growing heritage variety, organic cabbage. He saves his money and is finally able to purchase a small, narrow 37×1 track of land just outside the city-now he can devote himself full time to farming! So he packs up his skinniest overalls, mounts his trusty fixie and leaves his native homeland of Lawrenceville-- off to begin a new career as a farmer.

Otto quickly discovers that farming's tough work - especially in tight overalls. So he decides to program a simple robot to plant his cabbage for him...
def plant_cabbage(): print("@")

- Why a function planting individual cabbage?
- What does the rest of the problem require?
- Keeping count?

A little more space.

Otto's first crop is successful, although a little stunted. He reminds himself to leave some space between his cabbage next time. After carefully grooming his beard, he heads to the farmer's market and sells his cabbage; he's able to buy a little more land, expanding his track to 37×20.

Success!

Otto's cabbages grow well and become the hit of the farm to table circuit, and his labor-saving robot allows him to devote more of his time to listening to bands you've probably never heard of.

With the extra income, he's managed to increase his patch of land again. Time to add more functionality to the robot to accommodate the new field

New varieties of cabbage

Otto buys some new heritage varieties of green, purple, rainbow and yellow cabbage from the Picture and Thief Seed Co of Williamsburg. He plants an early row of the seeds to better understand how they grow: ["G", "G", "G", "G", "G", "G", "G", "G", "G", "P", "R", "R", "R", "R", "R", "R", "Y", "Y", "Y", "Y", "Y", "Y"]

Picture \& Thief

