
Algorithmic Thinking:
Loops and Conditionals

Announcements

¤ Programming Assignment 2 due tonight at 11:59 via
Autolab

¤ Tomorrow:
¤ Problem Set 3
¤ Lab 3
¤ Programming Assignment 3

¤ Note: updated test file

Today

¤ A control flow structure:
¤ for loop
¤ While loop

¤ Range
¤ Nesting control structures

¤ The notion of an algorithm

¤ Moving from algorithm to code

¤ Python control structures:
¤ Conditionals

¤ Lists (?)

Iteration with for loops

def test1():
for i in range(1,6):

print("Woof")

>>> test1()
Woof
Woof
Woof
Woof
Woof

What determines how
many times “Woof” is
printed is the number of
elements in the range.

Any expression that gives 5
elements in the range
would give the same
output.

For example, range(5),
range(0,5), …

Iteration with for loops

def test2():
for i in range(1,6):

print(i)

>>> test2()
1
2
3
4
5

range(5) ?
range(0, 5) ?

range(1, 10, 2) ?
range(2, 10, 2) ?

range(10, 1, -1) ?

Iteration with for loops

def test3():
for i in range(1,6):

print("Woof" * i)

>>> test3()
Woof
WoofWoof
WoofWoofWoof
WoofWoofWoofWoof
WoofWoofWoofWoofWoof

This expression creates a string
that concatenates i number
of "Woof"s.

Analogy:
3 * 4 is equivalent to 4+4+4
3 * "a" is equivalent to

"a" + "a" + "a"

Nesting?

An epidemic

def compute_sick(d):
computes total sick after d days
newly sick = 1 # initially 1 sick person
total_sick = 1

for day in range(2, d + 1):
each iteration represents one day

newly_sick = newly_sick * 2
total_sick = total_sick + newly_sick

return total_sick

8

Each newly infected person infects 2 people the next day.
The function returns the number of sick people after n days.

Variation on the Epidemic Example

Let’s write a function that
¤ Inputs the size of the population
¤ Outputs the number of days left before all the population

dies out

How can we do that using iteration (loops)?

Keep track of the number of sick people.

But do we know how many times we should loop?

Recall the Epidemic Example

10

def days_left(population):
computes the number of days until extinction
days = 1
newly_sick = 1
total_sick = 1
while total_sick < population:

each iteration represents one day
newly_sick = newly_sick * 2
total_sick = total_sick + newly_sick
days = days + 1

print(days, ” days for the population to die off")
return days

while loop

Format:

while condition:

loop body

11

one or more instructions
to be repeated

condition

LOOP
BODY

false

true

If the loop condition becomes false
during the loop body, the loop body
still runs to completion before we exit
the loop and go on with the next step.

Recall the Epidemic Example

12

def days_left(population):
computes the number of days until extinction
days = 1
newly_sick = 1
total_sick = 1
while total_sick < population:

#each iteration represents one day
newly_sick = newly_sick * 2
total_sick = total_sick + newly_sick
days = days + 1

print(days, "days for the population to die off")
return days

Loop condition

While Loop Examples

Prints first 10 positive integers

i = 1
while i < 11:

print(i)
i = i + 1

How about the following?

i = 0
while i < 10:

i = i + 1
print(i)

13

What is the value of i when
we exit the loop?

While vs. For Loops

Prints first 10 positive integers

i = 1
while i < 11:

print(i)
i = i + 1

Prints first 10 positive integers

for i in range(1,11):
print(i)

14

When to use for or while loops

¤ If you know in advance how many times you want to run
a loop use a for loop.

¤ When you don’t know the number of repetition needed,
use a while loop.

Algorithms

• An algorithm is “a precise rule (or set of rules)
specifying how to solve some problem.”
(thefreedictionary.com)

• The study of algorithms is one of the foundations
of computer science.

¤ New concept: algorithm

¤ New control structures
¤ While loops
¤ Conditionals

15110 Principles of Computing, Carnegie
Mellon University 17

image: AL-KHWARIZMI
historyoflinearalgebra.weebly.com

Mohammed al-Khwarizmi (äl-khōwärēz�mē)
Persian mathematician of the court of Mamun in Baghdad…the
word algorithm is said to have been derived from his name. Much
of the mathematical knowledge of medieval Europe was derived
from Latin translations of his works. (encyclopedia.com)

An algorithm is like a function

18

ALGORITHMINPUT OUTPUT

F(x) è y

Input

• Input specification
• Recipes: ingredients, cooking utensils, …
• Knitting: size of garment, length of yarn, needles …
• Tax Code: wages, interest, tax withheld, …

• Input specification for computational algorithms:
• What kind of data is required?
• In what form will this data be received by the algorithm?

19

Computation

• An algorithm requires clear and precisely stated
steps that express how to perform the operations to
yield the desired results.

• Algorithms assume a basic set of primitive operations
that are assumed to be understood by the executor
of the algorithm.
• Recipes: beat, stir, blend, bake, …
• Knitting: casting on, slip loop, draw yarn through, ...
• Tax code: deduct, look up, check box, …
• Computational: add, set, modulo, output, …

20

Output
• Output specification

• Recipes: number of servings, how to serve
• Knitting: final garment shape
• Tax Code: tax due or tax refund, where to pay

• Output specification for computational algorithms:
• What results are required?
• How should these results be reported?
• What happens if no results can be computed due to an error in

the input? What do we output to indicate this?

21

Is this a �good� algorithm?

¤ Input: slices of bread, jar of peanut butter, jar of jam

1. Pick up some bread.
2. Put peanut butter on the bread.
3. Pick up some more bread.
4. Open the jar of jam.
5. Spread the jam on the bread.
6. Put the bread together to make your sandwich.

¤Output?

22

What makes a �good� algorithm?

• A good algorithm should produce the correct
outputs for any set of legal inputs.

• A good algorithm should execute efficiently
with the fewest number of steps as possible
and should always stop.

• A good algorithm should be designed in such
a way that others will be able to understand it
and modify it to specify solutions to additional
problems.

23

A Simple Algorithm

Input numerical score between 0 and 100 and
Output “Pass” or “Fail”

Algorithm:
1. If score >= 60

a. Set grade to �Pass�
b. Print �Pass�

2. Otherwise,
a. Set grade to �Fail�
b. Print �Fail�

3. Print �See you in class�
4. Return grade

Exactly one of step 1 or step 2
is executed, but step 3 and
step 4 are always executed.

Coding the Grader in Python
Algorithm:
1. If score >= 60

a. Set grade to �Pass�
b. Print � Pass�

2. Otherwise,
a. Set grade to �Fail�
b. Print �Fai�

3. Print �See you in class �
4. Return grade

def grader(score):
if score >= 60:

grade = "Pass"
print("Pass")

else:
grade = "Fail"
print("Fail")

print("See you in class")
return grade

Control Flow

26

false
score >= 60

true

set grade to �Pass�
print �Pass”

set grade to �Fail�
print � Fail”

print(�See you in class�)
return grade

Flow chart: if statement

Format:

if condition :

statement_list

27

statement_list

false
condition

true

Flow chart:
if/else statement

Format:

if condition :

statement_list1

else:

statement_list2

28

statement_list1

false
condition

true

statement_list2

Grader for Letter Grades

29

score >= 90

set grade to �A�
print �you got an A�

score >= 80

score >= 70set grade to �B�
print �you got a B�

set grade to �C�
print �you got a C�

set grade to �D or lower�
print �your grade is less

than C�

true

true

true

false

false

false

Nested if statements

30

def grader2(score):
if score >= 90:

grade = "A"
print("You got an A")

else: # score less than 90
if score >= 80:

grade = "B"
print("You got a B")

else: # score less than 80
if score >= 70:

grade = "C"
print("You got a C")

else: #score less than 70
grade = "D or lower"
print("Your grade is less than C")

return grade

Equivalently

31

def grader3(score):
if score >= 90:

grade = "A"
print("You got an A")

elif score >= 80:
grade = "B"
print("You got a B")

elif score >= 70:
grade = "C"
print("You got a C")

else:
grade = "D or lower"
print("Your grade is less than C")

return grade

Flow chart:
if/elif/else statement

Format:

if condition1 :
statement_list1

elif condition2 :
statement_list2

else:
statement_list3

32

statement_list1

false
condition1

true

statement_list3

condition2

statement_list2

true false

Summary

¤ Notion of an algorithm:
¤ Kinds of instructions needed to express algorithms
¤ What makes an algorithm a good one

¤ Instructions for specifying control flow (for loop, while loop,
if/then/else)
¤ Flow charts to express control flow in a language-independent

way
¤ Coding these control flow structures in Python

33

Exercise

Write a function that returns how many of the three integers
n1, n2, and n3 are odd:

34

def num_odd(n1, n2, n3):

Exercise

Write a function that prints whether die1 and die2 are
doubles, cat’s eyes (two 1’s) or neither of these.

35

def print_doubles(die1, die2):

Try:

¤ Saving money to buy a new car – how long will it take to
save for a new Tesla Model X @ $80,000. (5000.00 in a
savings account)

¤ Saving for retirement – for different retirement targets,
and calculate how long it will take to reach that target.
Identify your variables and pre-assign values.

¤ Can you generalize the above to accommodate
different user input?

