
An Introduction to Programming with
Python

Variables, types, statements, functions

Last Time

¤Brief History of Computing

¤Due:
¤PA1 (Tuesday Night)
¤PS 1 (now!)
¤Academic Integrity Pledge (now!)

Reminders

¤ Lab Tonight

¤OLI Iteration Module Tonight

¤PS2 due for tomorrow

Today’s Lecture

¤ Introduction to Python

¤Mechanics

¤ Some Specifics:
¤ Basic datatypes

¤ Variables
¤ Operators

¤ Expressions
¤ Functions

Questions

¤How was submission process:
¤ Autolab – PA/Lab
¤ Gradescope - PS

¤How was the OLI module?

6

Execution of Python Programs

7

hardware

software

…..

Hardware versus Software

Execution of Python Programs

8

When you write a
program in Python,
Java etc. It does not
run directly on the OS.

Another program
called an
interpreter or virtual
machine takes it and
runs it for you
translating your
commands into the
language of the OS. …

Execution of Python Programs

9

…

We will write Python
programs that are
executed by the
Python Interpreter.

A Python Interpreter
for your OS already
exists. You can use the
one on lab machines,
install one for your
laptop, or use one
remotely

Using a Python Interpreter

There are two ways to interact with a Python interpreter:

1. Tell it to execute a program that is saved in a file with a
.py extension

2. Interact with it in a program called a shell

10

You will interact with Python in
both ways.

A Short Introduction to Python

¤ Starting the Python interpreter either using a Unix Server
at CMU or on your own computer
¤ See the Resources page for specific instructions

¤ Creating .py files with a text editor
¤ Files with the .py extension can be created by any editor but

needs a Python interpreter to be read.

¤ We have chosen editor editor for the course but you
may use an editor of your own choice if you feel comfortable.

¤ Why IDE? Why Not?

11

A programming “language” is a
formal notation

12

Not a natural language

Recipe

¤ Interpreted by a person

¤ Unclear? Can be figured out
(What kind of bread? Butter? What
kind of milk?)

¤ Typos? Can be figured out
(“mikl” means “milk”)

Computer program

¤ Interpreted by a machine

¤ …for a human (“somebody wants to
print something”)

¤ Unclear? Not a program
(“whatever I want”????)

¤ Typos? Program errors
(“pritn”???)

13

Toast and cereal
Toast the bread. Butter it. Put
some cereal in a bowl. Add mikl.

for i in range(5):
pritn(whatever I want)

A programming “language” is a
formal notation
for generalized problem solving

14

Programs should be general

Recipe Program

¤ def force(mass, accel)
:

return mass*accel

General: output is force for any
combination of mass and
acceleration.

15

¤

Specific: “output” is two cups of
sauce.

Python

¤ Python is one of many programming languages.

¤ 2 widely used versions. We will use Python 3.

¤ Running Python on the command line:

> python3

or

> python3 –i filename.py

16

Command Line Interfaces

¤ Be aware of the difference between “talking to the shell” and “talking to
Python”

17

$ ssh annpenny@linux.andrew.cmu.edu
annpenny@linux.andrew.cmu.edu's password:
…
[annpenny@unix2 ~]$ pwd
/afs/andrew.cmu.edu/usr14/annpenny
[annpenny@unix2 ~]$ python3
Python 3.3.2 (default, Aug 12 2013,
13:12:23)
[GCC 4.6.3] on linux
Type "help", "copyright", "credits" or
"license" for more information.
>>> quit()

Expressions and Statements

¤Know the difference!
Python evaluates an expression to get a result (number
or other value)

Python executes a statement to perform an action that
has an effect (printing something, for example)

18

Variables

Data Types

¤ Integers

¤ Floating Point Numbers

¤ Strings

¤ Booleans

4 15110 -53 0

4.0 0.80333333333
7.34e+014

"hello” "A" " " ””
'there' '"' '15110’

True False

Arithmetic Expressions

¤ Mathematical Operators
+ Addition
- Subtraction // Integer division
* Multiplication ** Exponentiation
/ Division % Modulo (remainder)

¤ Python is like a calculator: type an expression and it tells
you the value.

21

>> 2 + 3 * 5
Þ17

Order of Evaluation
Order of operator precedence:

** * / % + -

Use parentheses to force alternate precedence
5 * 6 + 7 ≠ 5 * (6 + 7)

Left associativity except for **
2 + 3 + 4 = (2 + 3) + 4
2 ** 3 ** 4 = 2 **(3 ** 4)

22

Integer Division

In Python3:

¤ 7 / 2 equals

¤ 7 // 2 equals

¤ 7 // 2.0 equals

¤ 7.0 // 2 equals

¤ -7 // 2 equals
¤ beware! // rounds down to smaller number,

not towards zero

23

3.5

3

3.0

3.0

-4

Variables

¤ A variable is not an �unknown� as in algebra.

¤ In computer programming, a variable is a place where you can store
a value.

¤ In Python we store a value using an assignment statement:

24

>> a = 5
>> a
=> 5

5a:

Variables

25

>> a
Þ5

>> b = 2 * a
>> b
Þ10

5a:

10b:

Variables

Variable b does not “remember” that its
value came from variable a.

26

�Woof�a:

10b:

>> a
Þ5
>> b
Þ10
>> a = �Woof�
>> a
Þ�Woof�
>> b
Þ10

Variable Names

¤ All variable names must start with a letter (lowercase recommended).

¤ The remainder of the variable name (if any) can consist of any combination of
uppercase letters, lowercase letters, digits and underscores (_).

¤ Identifiers in Python are case sensitive.
Example: Value is not the same as value.

27

Syntax vs. Semantics

Syntax

¤ Rules, structure

¤ Errors result when code is
not well formed.

Semantic

¤ Meaning

¤ Error results when
expression/statement can’t
be evaluated or executed
due to meaning.

Colorless green ideas sleep furiously

Colorless green ideas sleep furiously

It can only be the thought of verdure to come, which
prompts us in the autumn to buy these dormant white lumps
of vegetable matter covered by a brown papery skin, and
lovingly to plant them and care for them. It is a marvel to
me that under this cover they are laboring unseen at such a
rate within to give us the sudden awesome beauty of spring
flowering bulbs. While winter reigns the earth reposes but
these colorless green ideas sleep furiously.

Function Syntax

def functionname(parameterlist):
����instructions

¤def is a reserved word and cannot be used as a variable
name.

¤Indentation is critical. Use spaces only, not tabs!

30

Functions are general
¤ The parameter list can contain 1 or more variables that represent data to be

used in the function’s computation.

¤ A function can also have no parameters – but now it can only do one thing!

def hello_world():

print("Hello World!\n”)

(\n is a newline character)

31

parentheses
must be
present!

Example: area of a countertop

32

?
4 / 2 = 2

4 / 2 = 2

4

countertop.py

def compute_area():

square = 4 * 4

triangle = 0.5 * (4 / 2) * (4 / 2)

area = square - triangle

return area

To call (use) the function in python3:

python3 –i countertop.py

>>> compute_area()

14.0

33

empty parameter list

empty argument
list

Generalizing the problem

34

?
X / 2

X / 2

X

countertop.py

def compute_area(side):

square = side * side

triangle = 0.5 * (side / 2 * side / 2)
area = square - triangle

return area

To call (use) the function in python3:

python3 –i countertop.py

>>> compute_area(109)

35

parameter

argument
(run function with side = 109)

Function Outputs

A function outputs a value by return
def three_x(x):

return x * 3

… or it might do some action and (by default)
return None:

def hello_world():

print("Hello World!\n”)

36

Method Outputs

¤ >>> three_x(12)
36
>>> print(three_x(12))
36

¤ >>> hello_world()
Hello World!
>>> print(hello_world())
Hello World!
None

37

value returned

value returned and printed

value printed by method
value printed by method

value returned and printed

Method Outputs

¤ To use a method, we �call� the method.

¤ A method can return either one answer or no answer (None) to its �caller�.
¤ The hello_world function does not return anything to its caller. It simply

prints something on the screen.

¤ The three_x function does return its result to its caller so it can use the
value in another computation:
three_x(12) + three_x(16)

38

Function Outputs
¤ Suppose we write compute_area this way:
def compute_area(side):

square = side * side

triangle = 0.5 * side/2 * side/2

area = square - triangle

print(area)
¤ Now the following computation does not work. Why?
compute_area(109) + compute_area(78)

39

Built-In Functions (Methods)

¤Lots of math stuff, e.g., sqrt, log, sin, cos

import math
r = 5 + math.sqrt(2)
alpha = math.sin(math.pi/3)

40

Using predefined modules

¤ math is a predefined module of functions (also called methods) that we can use
without writing their implementations.

math.sqrt(16)
math.pi
math.sin(math.pi / 2)

41

What Could Possibly Go Wrong?

alpha = 5
2 + alhpa

3 / 0
import math

math.sqrt(-1)
math.sqrt(2, 3)

42

Try

¤ Create a function that calculates 18% tip

¤ input(”Enter your check’s total: ”) would return
a user-entered variable. Write a short python script that
would advise users of an appropriate tip based on their
input.

¤ Create a function that takes two parameters (mass and
radius) and calculates escape velocity. Note:
¤ G = 6.67e-011
¤ Our fine planet has mass of 5.9742e+024,

and a radius of 6378.1

Remember

¤Next Lecture: Programming with Python
¤ Note resources link and tutorials have extra info

on getting running with python

¤ Tonight:
¤ Lab 2
¤ OLI Iteration Module

¤ For tomorrow (Friday, 9:00):
¤ PS2

44

Useful Unix Commands (Part 1)

45

All commands must be typed in lower case.

pwd --> print working directory, prints where you currently are

ls --> list, lists all the files and folders in the directory

cd stands for 'change directory':
cd lab1 --> change to the lab1 directory/folder
cd .. --> going up one directory/folder
cd ../.. --> going up two directories

Useful Unix Commands (Part 2)

46

mkdir lab1 --> make directory lab1 aka makes a folder called lab1

rm -r lab1 --> removes the directory lab1
(-r stands for recursive, which deletes any possible

folders in lab1 that might contain other files)

cp lab1/file1.txt lab2 --> copies a file called file1.txt, which is I
inside of the folder lab1, to the folder lab2

mv lab1/file1.txt lab2 --> moves a file called file1.txt, which is inside
of the folder lab1, to the folder lab2

zip zipfile.zip file1.txt file2.txt file3.txt -->
zips files 1 to 3 into zipfile.zip

zip -r zipfile.zip lab1/ --> zips up all files in the lab1 folder into
zipfile.zip

Useful Unix Commands (Part 3)

47

^c --> ctrl + c, interrupts running program

^d --> ctrl + d, gets you out of python3

"tab" - autocompletes what you're typing based on the files in the current folder

"up" - cycles through the commands you've typed. Similarly for the opposite effect,
press "down"

Useful Unix Commands (Part 4)

48

python3 -i test.py --> load test.py in python3, and
you can call the functions in test.py.

gedit lb1.txt & --> opens up lb1.txt on gedit and & allows you to
run your terminal at the same time
(else your terminal pauses until you close gedit)

And lastly, you can always do man <command> to find out more about a
particular command you're interested about (eg. man cp, man ls)

