ANSWER KEY

Name: \qquad Section: \qquad

Andrew Id:

\qquad

Directions: Answer each question neatly in the space provided.
Please read each question carefully. You have 50 minutes for this exam.
No electronic devices allowed. Good luck!
Q. 1 History of Computing Devices
(a) [1 pt] Although it was never built, the design of Charles Babbage's Analytical Engine is considered to be the foundation of modern computing. Why?

Because it had all the crucial features of modern computing:

* Arithmetic and logical operations
* Digital data storage
* Programs stored in memory
(b) [1 pt] How did the Jacquard's Loom improve the knitting process and make it possible to complete complex weaves at a much faster rate? What did this show people about the relationship between machines and human beings?

By using a loop of punched cards complex patterns of knitting is completed easily and efficiently. This showed that knowledge and human expertise could be captured in machinereadable form.
(c) [1 pt] Moore's Law says that computers become twice as powerful every 2 years. According to this, 12 years from now, computers will be \qquad times as powerful as they are now.
$2^{6}=64$ times as powerful as they are now
(d) [2 pt] A Terabyte (TB) is 2^{40} Bytes and a Gigabyte (GB) is 2^{30} Bytes. If you have a storage device with a capacity of 4 TB and a movie takes 2 GB place. How many movies can you fit in that device? (You can express the result as a power of 2 , without converting it to decimal).

$$
\begin{aligned}
& \text { 4TB }=2^{2} * 2^{40} \text { bytes }=2^{42} \\
& 2 \mathrm{~GB}=2^{1 *} 2^{30} \text { bytes }=2^{31} \\
& \text { Answer }=2^{42} / 2^{31}=2^{11}=2048 \text { Movies }
\end{aligned}
$$

(a) [6 pts] For each of the following Python expressions, write down the value that is output when the expression is evaluated using a python3 interpreter. Write Error if you think the expression will raise an error.
$22 / / 7 \quad 3$
$3>=3.1 \quad$ False
$5 / 2$ \qquad
$18 \% 12$ \qquad
"25" * 2 \qquad
(b) [4 pts] Suppose that we type the following assignments in a Python shell in the given order.

```
>>> salary = 4000
>>> rate = 0.1
>>> increase = salary * rate + 100
>>> salary = salary + increase
>>> wageCut = 1 / 3 * salary
```

Write the value that will be output if the expression was evaluated by a Python Interpreter

\ggg	salary	$\rightarrow 4500.0$
\gg increase	$\rightarrow 500.0$	
\gg wageCut	$\rightarrow 1500.0$	
\gg (wageCut >1000) and (salary==4000)	\rightarrow False	

(c) [4 pts] Assume the following list definition in Python.

```
>>> cars = ["Mazda", "Mercedes", "Toyota", "Audi", "Chrysler"]
```

What would be displayed in a Python shell for each of the following expressions if they are evaluated in the given order? If it would give an error then write Error.

\ggg len(cars)	$\rightarrow 5$
\ggg cars[4]	\rightarrow Chrysler
\ggg cars[2] < cars[3]	\rightarrow False
\ggg cars[len(cars) - 4]	\rightarrow Mercedes
\ggg "Maz" in cars	(+bonus)

(d) [6 pts] Show how to create lists according to the descriptions below
I) Create a list named tens consisting of integers from 10 to 99 inclusive in an increasing order.

```
        tens = list(range(10,100))
```

II) Create a list named numbers consisting of 30 copies of the number 1.

$$
\text { numbers }=[1] * 30
$$

III) Let IstTeamA and IstTeamB be two non-empty lists. Show how to insert the first element of IstTeamA into IstTeamB so that it will be $3^{\text {rd }}$ item of IstTeamB.

lstTeamB.insert(2, lstTeamA[0])

3. This question focuses on the basics of Python functions and tracing.
(a) [2 pts] Write a function triangle_area which takes two parameters (height and base) to calculate and return the area of the triangle. The area of triangle is calculated with the formula below:

$$
\text { Area }=\frac{\text { height } * \text { base }}{2}
$$

```
def triangle_area(height, base):
    return height * base / 2
```

(b) [2 pts] Write a function truncated_triangle which also takes height and base parameters (h and b) as input, and computes the area of a triangle that the tip cut off. The tip is also a triangle; its height and base are 10% of the height and base, respectively, of the larger triangle, as shown in the figure. Use the triangle_area function in your solution.


```
def truncated_triangle(h, b) :
    return triangle_area(h, b) - triangle_area(h * 0.1, b * 0.1)
```

def truncated_triangle(h, b):
cutArea $=$ triangle_area(h / 10, b / 10)
return triangle_area(h, b) - cutArea
(c) [4 pts] Consider the following Python function where m and n are assumed to be positive integers. Trace this function for $m=2$ and $n=5$ and show the output of it.

```
def mystery1(m, n):
    i = 0
    while i < n:
        i = i + 1
        print(i ** m, end=" ")
```

First, call the function mystery1 for $\mathbf{m}=\mathbf{2}$ and $\boldsymbol{n}=\mathbf{5}$
Second, go to the next line and show the output
>>> mysteryl(2, 5)
1491625
(d)[2 pts] Which of the following is the output of the function mystery1 expressed in terms of m and n ? Circle your answer?

(e)[4 pts] If the print statement was taken outside of the while loop to occur right after the while statement, as shown below (mystery2), what would be printed by the call of mystery2 function with parameters 3 and 10?

```
def mystery2(m, n):
    i = 0
    while i < n:
        i = i + 1
    print(i ** m, end=" ")

First, call the function mystery2 for \(\boldsymbol{m}=\mathbf{3}\) and \(\boldsymbol{n}=\mathbf{1 0}\) Second, go to the next line and show the output
```

>>> mystery2(3, 10)

```
```

```
>>> mystery2(3, 10)
```

```

1000
(f) [3 pts] Consider the mystery2 function above and show the output of the program segment below.
```

mysteryVal = mystery2(2, 3)
if mysteryVal == 9:
print("I'm here:", mysteryVal)
else:
print("Here I'm:", mysteryVal)

```
(g) [6 pts] Consider the following recursive function below that computes the sum of a set of pairs of integers.
```

def mySum(a, b):
if a <= 0:
return 0
elif a == b:
return a + mySum(a-1, b+1)
else:
return a + b + mySum (a-1, b+1)

```

Show how the calculation is completed by listing the sequence of function calls that lead to the answer. The first two calls are given for you.
```

mySum(4, 4) }
mySum(3, 5) }->\mathrm{ mySum(2, 6) }->\mathrm{ mySum(1, 7) }->\mathrm{ mySum(0, 8)

```

\section*{Write the final values returned from:}
```

>>> mySum(2, 3)
10 (= 2+3 + 1+4 + 0)
>>> mySum(4, 4) 28 (= 4 + 3+5 + 2+6 + 1+7 + 0)

```

\section*{4. This question focuses on loops and searching.}
(a) [7 pts] A function is needed to determine whether the numbers in a given list is ordered or not. This function takes a list as an input parameter and, it returns 'True' if the items of the list are sorted in an ascending way. If it is not sorted the function returns False. For example the function will return True for the list [23, 34, 40, 60] but it will return False for the list [23, 34, 33, 60].Complete the missing parts of the function. Do not use built-in functions used for sorting like sorted.
```

def isSorted(myList):

```
index \(=0\)
while index < len(myList)-1 :
                    if myList[index] > myList[index+1] :
                    return False
                    index \(=\quad\) index +1
return
\(\qquad\)
(b) [2 pts] Give an example of a five element list that would be a worst case input for the isSorted function.
\([1,2,3,4,5]\) Any sorted list will be the worst case. \([1,2,3,4,0]\) is acceptable since last item is controlled in the last iteration.
(c) [2 pts] What is the big O worst case complexity of isSorted function? Indicate what \(n\) refers to.
\(0(n) \quad n\) is size of list \(\quad 3 n-1=1+(n-1)+(n-1)+(n-1)+1\)
(d) [2 pts] Show the output generated from each of the following calls to isSorted function
```

>>> isSorted([16, 64, 128, 256, 512])
>>> isSorted([64, 128, 512, 510])

```

Answer: \(\qquad\)

Answer: \(\qquad\)
(e) [3 pts] See the isSorted function above. How many times would the while loop iterate when we call isSorted(list(range(10,100)))?

Answer: 89 times (There are 90 items in the list but note that while statement checks index to be less then < len(myList)-1 and index starts with 0)
(f) [5 pts] Trace the following youNameIt recursive function which takes a list as parameter. First, try to understand what it does and show the change in variables and the function calls in the table below for listA \(=[\mathbf{2}, \mathbf{5}, \mathbf{7}, \mathbf{6}]\) and then give an appropriate name to that function which should be related to its aim.
def youNameIt(myLst):
listSize \(=\) len(myLst)
if listSize < 2 :
return True
else:
```

return (myLst[0] <= myLst[1]) and youNameIt(myLst[1:])

```
\begin{tabular}{|lc|c|c|c|c|}
\hline youNameIt( myLst ) & listSize & myLst[0] <= myLst[1] & myLst[1:] & Value Returned \\
\hline youNameIt ( \([2,5,7,6])\) & 4 & True & {\([5,7,6]\)} & True and False \(\rightarrow\) False \\
\hline youNameIt ( \([5,7,6]\) & ) & 3 & True & {\([7,6]\)} & True and False \(\rightarrow\) False \\
\hline youNamelt ( \([7,6]\) & ) & 2 & False & {\([6]\)} & False and True \(\rightarrow\) False \\
\hline youNameIt ( [6] & ) & 1 & True & - & True \\
\hline youNamelt ( & ) & & & & \\
\hline
\end{tabular}

\section*{Your suggestion for the function name}
\(\qquad\) checkSortedness() \(\qquad\)
5. This question deals with searching and sorting.
[18 points]
(a) [4 pts] What is the big O complexity of insertion sort? \(\qquad\)
What is the big O complexity of merge sort? \(\qquad\)
Fill in at least two of the boxes with appropriate formulas

(b) [6 pts] Fill in the table below to show how binary search would locate the value " d " in the letters ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"]. Use the binary search algorithm covered in lecture. Note: this table may contain extra rows.
\begin{tabular}{|c|c|c|c|c|}
\hline Iteration & Lower & Upper & Mid & letters[mid] \\
\hline 1 & -1 & 11 & 5 & f \\
\hline 2 & -1 & 5 & 2 & c \\
\hline 3 & 2 & 5 & 3 & d \\
\hline 4 & & & & \\
\hline 5 & & & & \\
\hline 6 & & & & \\
\hline
\end{tabular}
(c) [4 pts] Which algorithm is better for the cases below

Finding an element in an unsorted list
Finding an element in a sorted list
\begin{tabular}{|l|}
\hline linear search \\
\hline binary search \\
\hline
\end{tabular}
(d) [4 points] Suppose you want to look up a word in a dictionary which has 500 pages.

Consider only finding the correct page in the dictionary by comparing the word you are looking for to the first word on any given page.

Answer the questions below accordingly:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
If you use binary search, how many name comparisons \\
must you perform on the worst case?
\end{tabular} & \(\log 500\) \\
\hline \begin{tabular}{l} 
If you to use linear search, how many name comparisons \\
must you perform on the worst case?
\end{tabular} & 500 \\
\hline
\end{tabular}
(a) [8 pts] On a computer system, a user can draw a square using the function
draw_square(left, top, side_length)
where left, top, and side_length are given in pixels.

In the \(200 \times 200\) window shown below, draw what would be displayed by the following recursive function if it is initially called with \(X=10, Y=10\), and side \(=10\). (Grid lines are provided for you to help you draw your picture.)
```

def rec_draw(x, y, side):
if side <= 100 and x < 100:
draw_square(x, y, side)
if side > 20:
draw_square(x-20, y-20, 20)
if side > 30:
draw_square(x-30, y-30, 10)
rec_draw(x+side, y+side, side*2)

```

\begin{tabular}{|llll|}
\hline & \(x\) & \(y\) & side \\
input & 10 & 10 & 10 \\
draw square & 10 & 10 & 10 \\
\hline input & 20 & 20 & 20 \\
draw square & 20 & 20 & 20 \\
\hline input & 40 & 40 & 40 \\
draw square & 40 & 40 & 40 \\
draw square & 20 & 20 & 20 \\
drawsquare & 10 & 10 & 10 \\
\hline input & 80 & 80 & 80 \\
draw square & 80 & 80 & 80 \\
draw square & 60 & 60 & 20 \\
drawsquare & 50 & 50 & 10 \\
\hline input & 160 & 160 & 160 \\
do nothing and exit & & \\
\hline
\end{tabular}
(b) [3 pts] Consider the following flow chart. Convert the above flow chart into Python code. Use the following outline. If you can only implement the function in a different way, do it and you can receive up to half credit.

def mystery_func(n):
def mystery_func(n):
    pdt = 1
    pdt = 1
    \(i=0\)
    while i 2 * :
        pdt = pdt * 5
        \(i=i+1\)
    return
\(\qquad\)
(c) [2 pts] Explain in one sentence the purpose of this code (using n in your answer). A mathematical expression can be your explanation.
\[
5^{2 n}+n
\]```

