Catering to the Bias

Maryam Saeedi Yikang Shen Ali Shourideh

Carnegie Mellon University EIEF, July 2023

July 25, 2023

Personalized Recommender Systems _

- Ubiquitous nowadays
 - o eCommerce recommendations: Amazon, Google Shopping, NYT Wirecutter
 - o Social Media: Facebook, TikTok, Instagram, Youtube, Twitter
 - News Aggregators: Feedly, Google News, Panda, Techmeme, Flipboard, Youtube, Twitter

Personalized Recommender Systems _

- Ubiquitous nowadays
 - eCommerce recommendations: Amazon, Google Shopping, NYT Wirecutter
 - o Social Media: Facebook, TikTok, Instagram, Youtube, Twitter
 - News Aggregators: Feedly, Google News, Panda, Techmeme, Flipboard, Youtube, Twitter
- The incentives of the recommender system (principal) and users (agents) are not aligned
 - Principal: Maximize engagement; in order to maximize ad revenue
 - Agent: Acquire information, time cost

What we do

- Personalized aggregators: sometimes blamed for polarization in the media for amplifying biases
- This paper: what are its theoretical implications?
 - Hopefully later: what can/should we do about it?
- The Model:
 - Principal: wants to give information as late as possible
 - o Agent: Wants to learn as soon as possible! Time cost (variety of cases)
 - A and P: Bayesian; possibly different prior
 - P can commit but A cannot

Overview of Results _____

- Principal and agent share the same prior beliefs,
 - The relative curvature of A's payoff w.r.t time to that of principal determines optimal provision of news
 - (A relative to P) Convex in time: Poisson revelation with an intensity determined by the agent's discount rate
 - (A relative to P) Concave in time: A period of no information followed by an immediate revelation
 - Intermediate cases: habit formation and boredom!

Overview of Results ____

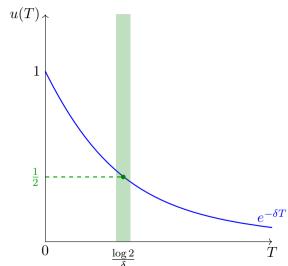
- Principal and agent share the same prior beliefs,
 - The relative curvature of A's payoff w.r.t time to that of principal determines optimal provision of news
 - (A relative to P) Convex in time: Poisson revelation with an intensity determined by the agent's discount rate
 - (A relative to P) Concave in time: A period of no information followed by an immediate revelation
 - Intermediate cases: habit formation and boredom!
- When the agent has a biased prior
 - P always caters to A's biased prior
 - early in the game reveals the state where the agent thinks is more likely
 - Some form of gradual revelation is always necessary no abrupt revelation

Simple Example ____

- (Simple and very limited) Game between an informed principal (committed) and an uninformed agent (uncommitted)
- Actions:
 - P: choose time $T \in \mathbb{R}_+ \cup \{0\}$ to reveal the state
 - \circ A: chooses between quitting or staying at any time t < T (no reason to stay after knowing the state)
- Payoffs:
 - \circ P: T, i.e., he values engagement
 - A: $u(T) = e^{-\delta T}v$ (Info), i.e., she values time not listening to the principal!!

$$v\left(\text{Info}\right) = \begin{cases} 1 & \text{Info} = \text{State} \\ 1/2 & \text{Info} = \text{Prior} \end{cases}$$

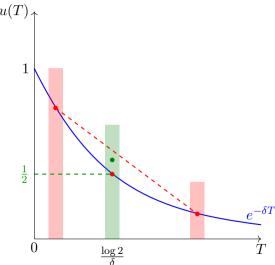
• Revelation strategy: reveal at $e^{-\delta T^*} = 1/2$



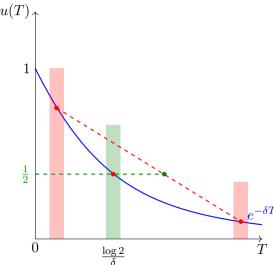
Maryam Saeedi, Yikang Shen, Ali Shourideh

Catering to the Bias

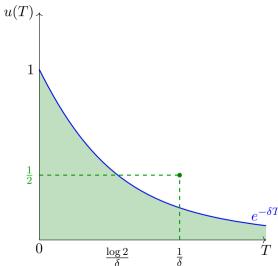
• Spread revelation time around T^*



• Spread revelation time around T^* and increase its mean



• Distribution: exponential at rate δ ; Poisson revelation

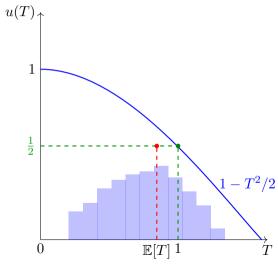


Simple Example ____

- Alternative: $u(T) = (1 T^2/2) v$ (info)
- In this case, a mean preserving contraction of any distribution of T benefits $A \circ \Rightarrow$ its mean can be pushed up!
- Optimal revelation strategy is T^*

$$1 - (T^*)^2 / 2 = 1/2 \rightarrow T^* = 1$$

• Concave payoff: Jensen's inequality: $\mathbb{E}[T] < 1$



Summary of Example _

- Relative concavity of the payoffs matter:
 - A convex relative to P: poisson revelation of information
 - A concave relative to P: abrupt revelation
- Example: quantity of information is fixed
 - Clearly can be varied by gradual slant, mixed messaging, etc.

Related Literature

- Basics of information economics:
 - Kamenica and Gentzkow (2011) and many many many more!
 - Information design with incentives: Boleslavsky and Kim (2022), Onuchic and Ray (2022), Saeedi and Shourideh (2023), Best, Quigley, Saeedi, Shourideh (2023)
- Models of Dynamic Communication
 - Ely and Szydlowski (2020), Orlov, Skrzypacz, Zryumov (2020), Che, Kim and Meierendorf (2022), Hebert and Zhong (2022): difference in payoffs and information revelation policies
 - 3S: New insights on the change of optimal disclosure
- Small literature on recommender systems in economics: Calvano, Calzolari, Denicolo, and Pastorello (2023): focus on effect on competition
- Lots of commentary on the issue:
 - Example: Acemoglu and Robinson: tax online advertisement; Our model: not so straightforward

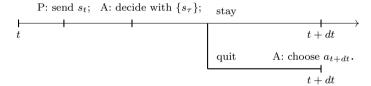
Full Model _____

- As before time is continuous
- Agent utility function

$$u_A(T, \omega, a) = D(T) \hat{u}(\omega, a)$$

- Underlying state: $\omega \in \Omega = \{0,1\}$ more would not make much of a difference
- Action: $a \in A$
- Time spent acquiring information: T
- D(T) is strictly decreasing in T and $\hat{u}(\omega, a) \geq 0$
- Principal payoff: T
- Possibly uncommon priors $\mu_0^A = \mathbb{P}^A (\omega = 1), \mu_0^P = \mathbb{P}^P (\omega = 1) \in (0, 1)$. Common knowledge

Timing



The Model

- P chooses an information structure.
- A mapping from the space of history realizations to probability distributions over signals at t.

$$\left(S_{\infty} \times \Omega, \mathcal{F}, \mathbb{P}^P, \{\mathcal{F}_t\}_{t \in \mathbb{R}_+}\right)$$

- \circ S_{∞} : the set of history of signal realizations,
- Each member is of the form s^{∞} , \mathcal{F} is a σ -algebra over $S_{\infty} \times \Omega$,
- $\circ \mathbb{P}^P$: probability measure from the principal's perspective
- $\mathcal{F}_t \subset \mathcal{F}_{t'} \subset \mathcal{F}, \forall t < t' \text{ is a filtration.}$

The Model

• A's information is similar except that it does not include Ω and

$$\mathbb{P}^{A}\left(S\right) = \mu_{0}^{A} \cdot \mathbb{P}^{P}\left(S \times \Omega | \omega = 1\right) + \left(1 - \mu_{0}^{A}\right) \cdot \mathbb{P}^{P}\left(S \times \Omega | \omega = 0\right)$$

- $\circ \mathcal{F}_{t}^{A}$ is similarly calculated
- Equilibrium is standard:
 - A cannot commit to exit strategies
 - P can commit to information structure

Some Examples ___

• Key assumption:

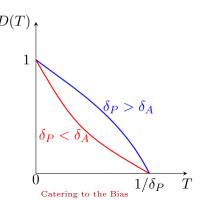
$$u^{P} = T$$

 $u^{A} = D(T) \hat{u}(\omega, a)$

• Useful to think about some examples to understand how to think about different shapes of D(T).

Some Examples

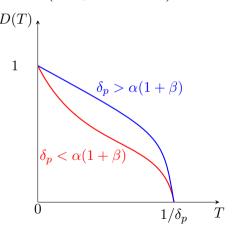
Example 1. Standard Exponential Discounting: relative patience.



Some Examples

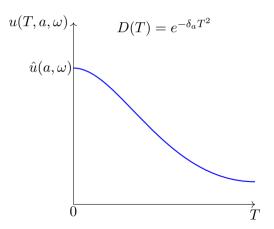
• Example 2. Gradually more patient agent $u^A = (1 + \alpha T)^{-\beta} \hat{u}(\cdot)$; could be interpreted as habit formation

• Set
$$T = u^P \Rightarrow D(T) = \left(1 - \frac{\alpha}{\delta_p} \log(1 - \delta_p T)\right)^{-\beta}$$



Some Examples

• Example 3. Gradually less patient agent $u^A = e^{\int_0^T g(\tau)d\tau} \hat{u}(\cdot), g' < 0, g'' > 0;$ Boredom!



The Model – Characterization

Lemma. If A exits after history s_t , then $\mu_t^A = \mathbb{E}^A [\omega | s_t] = 0, 1$ a.e.

• Idea of proof: If not, then split the signal into two fully revealing signals each with probability μ_t^A and $1 - \mu_t^A$. Increases the value of staying at all histories. Allows P to reduce the probability of exit and increase his payoff.

The Model

Assumption. The Payoff function $v(\mu) = \max_{a \in A} \mathbb{E}_{\mu} [\hat{u}(a, \omega)]$ is strictly convex, differentiable and symmetric around $\mu = 1/2$.

- Allows us to take derivatives
- An example is $\hat{u}(a,\omega) = a(\omega 1/2) a^2/2, A = [-1, 1]$
- Does not include $|A| < \infty$, since $v(\mu)$ is piecewise linear
 - can approximate with smooth convex functions

The Model

- Can apply Caratheodory theorem
 - o 3 signals in each period is sufficient: $\Omega \cup \{\text{No News}\}\$
- Choice of information structure is equivalent to choice of two D.D.F functions (decumulative distribution functions)

$$G_{1}(t) = \mathbb{P}^{A} \text{ (exit } \geq t, \omega = 1)$$

$$G_{0}(t) = \mathbb{P}^{A} \text{ (exit } \geq t, \omega = 0)$$

$$\hat{\mu}^{A}(t) = \mathbb{P}^{A} \text{ (}\omega \text{ |stay until } t\text{)}$$

$$= \frac{G_{1}(t)}{G_{1}(t) + G_{0}(t)} = \frac{G_{1}(t)}{G(t)}$$

• D.D.F's are decreasing and $G_1(0) = \mu_0^A = 1 - G_0(0)$

Optimal Information Provision

$$\max_{G_0,G_1} \int_0^\infty \left(G_1\left(t\right) + \ell G_0\left(t\right)\right) dt$$

subject to

$$v\left(1\right)D\left(t\right)G\left(t\right)+v\left(1\right)\int_{t}^{\infty}G\left(s\right)D'\left(s\right)ds\geq G\left(t\right)D\left(t\right)v\left(\hat{\mu}^{A}\left(t\right)\right),\forall t$$

$$G_{\omega}\left(t\right):\text{ non-increasing}$$

$$G_{1}\left(0\right)=1-G_{0}\left(0\right)=\mu_{0}^{A}$$

• $\ell = \frac{\mu_0^A}{1 - \mu_n^A} / \frac{\mu_0^P}{1 - \mu_n^P}$: likelihood ratio; adjustment needed for difference in prior

Solution Method

- Objective is linear in $G_{\omega}(t)$
- Constraint set is convex and has a non-empty interior. We can use standard Lagrangian techniques
 - o Guess a Lagrangian
 - Use first order condition
 - Use ironing when necessary
- Somewhat similar to Kleiner, Moldovanu, and Strack (2021) and Saeedi and Shourideh (2023)
 - key difference: it is not a linear program

The Agreement Case ___

- Suppose that $\mu_0^A = \mu_0^P \to \ell = 1$.
- First the easy one!

The Agreement Case _

- Suppose that $\mu_0^A = \mu_0^P \to \ell = 1$.
- First the easy one!

Proposition. Concave Discounting. When D(T) is concave, optimal solution is

$$G_{1}(t) = \mu_{0} \mathbf{1} [t < t^{*}]$$

$$G_{0}(t) = (1 - \mu_{0}) \mathbf{1} [t < t^{*}]$$

$$v(1) D(t^{*}) = v(\mu_{0}) D(0)$$

The Agreement Case _

- Suppose that $\mu_0^A = \mu_0^P \to \ell = 1$.
- First the easy one!

Proposition. Concave Discounting. When D(T) is concave, optimal solution is

$$G_{1}(t) = \mu_{0} \mathbf{1} [t < t^{*}]$$

$$G_{0}(t) = (1 - \mu_{0}) \mathbf{1} [t < t^{*}]$$

$$v(1) D(t^{*}) = v(\mu_{0}) D(0)$$

- Silence until t^* is optimal!
- Agent is only indifferent at time $0 \to \text{Time inconsistency}$

The Agreement Case _

Proposition. Convex Discounting. When $D\left(T\right)$ is convex, optimal solution has two phases (if $\mu_0 > 1/2$)

$$t \le t^* : G_1'(t) < 0, \hat{\mu}'(t) < 0, G_0(t) = 1 - \mu_0$$

$$t \ge t^* : \hat{\mu}(t) = 1/2, \frac{G_0'(t)}{G_0(t)} = \frac{G_1'(t)}{G_1(t)} = \frac{D'(t)}{D(t)}$$

The case with $\mu_0 < 1/2$ is symmetric.

The Agreement Case ___

Proposition. Convex Discounting. When D(T) is convex, optimal solution has two phases (if $\mu_0 > 1/2$)

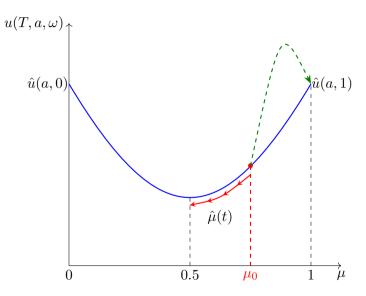
$$t \le t^* : G_1'(t) < 0, \hat{\mu}'(t) < 0, G_0(t) = 1 - \mu_0$$

$$t \ge t^* : \hat{\mu}(t) = 1/2, \frac{G_0'(t)}{G_0(t)} = \frac{G_1'(t)}{G_1(t)} = \frac{D'(t)}{D(t)}$$

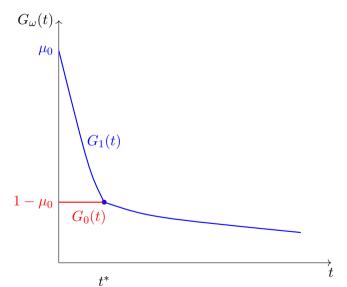
The case with $\mu_0 < 1/2$ is symmetric.

- Belief-Smoothing
 - A's value function $v(\mu)$, i.e., cost of delay, is strictly convex
- Agent is always indifferent \rightarrow Time consistency

Agreement: Convex Discounting



Agreement: Convex Discounting



Agreement: Convex Discounting

- Two phases with time-varying Poisson revelation of information
 - Phase 1: Arrival of news about the more likely state at rate $> -\frac{D'(t)}{D(t)}$
 - Phase 2: Arrival of news about both state at rate $-\frac{D'(t)}{D(t)}$
- Phase 1 depends on the curvature of $v(\mu)$
 - The more convex it is, the longer is Phase 1
 - Belief-smoothing: Agent values smoothness of beliefs

Agreement: Convex-Concave _____

- Suppose there exists an inflection point T_i where D(T) is convex below T_i and concave above T_i .
 - Possible with habit formation:

Proposition. Optimal information structure has (at most) three phases:

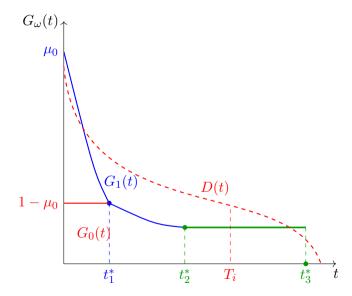
Phase1. More likely state is revealed according to poisson,

Phase2. Both states are revleaed at rate -D'(t)/D(t),

Phase3. Silence followed by revelation of both states.

• Phase 3 often starts before T_i

Agreement: Convex-Concave



Disagreement ___

• Payoff of P

$$\int_{0}^{\infty} \left(\hat{\mu}^{A} \left(t \right) + \left(1 - \hat{\mu}^{A} \left(t \right) \right) \ell \right) \left[G_{0} \left(t \right) + G_{1} \left(t \right) \right] dt$$

where $\ell = \frac{\mu_0^A}{1-\mu_0^A} / \frac{\mu_0^P}{1-\mu_0^P}$ is the relative likelihood ratios.

- We are writing everyone's payoff as a function of beliefs of the agent.
- WLOG, let's say $\ell < 1$ so A is more optimistic about $\omega = 0$.
- Given that P prefers μ closer to 1, wants A to spend the most time strictly above $\hat{\mu} = 1/2$.

Disagreement: Convex Discounting

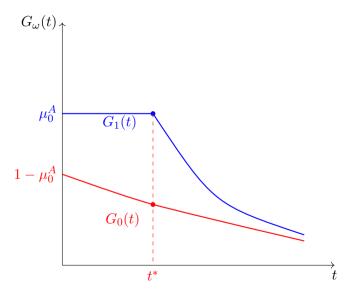
Proposition. Convex Discounting and Disagreement. Suppose $D(T) = e^{-\delta T}$ and $\mu_0^A < \mu_0^P$, then optimal solution two phase

$$t \le t^* : G'_0(t) < 0, \hat{\mu}'(t) > 0, G_1(t) = \mu_0^A$$

$$t \ge t^* : \hat{\mu}(t) = \mu^*(t) > \mu_0^A, \frac{G'_0(t)}{G_0(t)} = \frac{G'_1(t)}{G_1(t)} = -\delta$$

- Again two phases:
 - o Cater to the bias phase: reveal the A-optimistic state
 - Settle on higher belief

Catering to the Bias



Disagreement: Concave Discounting

Proposition. Concave Discounting and Disagreement. Suppose $\mu_0^A < \mu_0^P$, then optimal solution is

$$t \le t^* : G'_0(t) < 0, \hat{\mu}'(t) > 0, G_1(t) = \mu_0^A$$

 $t \ge t^* : \hat{\mu}(t) = 1, G_0(t) = G_1(t) = 0$

- Abrupt full revelation is not optimal:
 - o P gets different payoffs in each state; would rather reveal state 1 later

Disagreement: Concave Discounting

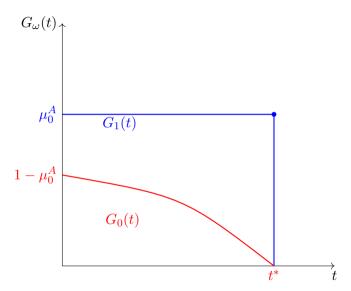
Proposition. Concave Discounting and Disagreement. Suppose $\mu_0^A < \mu_0^P$, then optimal solution is

$$t \le t^* : G'_0(t) < 0, \hat{\mu}'(t) > 0, G_1(t) = \mu_0^A$$

 $t \ge t^* : \hat{\mu}(t) = 1, G_0(t) = G_1(t) = 0$

- Abrupt full revelation is not optimal:
 - o P gets different payoffs in each state; would rather reveal state 1 later
- Only one phase:
 - Cater to the bias phase: reveal the A-optimistic state until A is fully pushed to the pessimistic state

Catering to the Bias



Conclusion .

- Developed a dynamic model of information provision when the principal wants to maximize engagement
- Relative curvature of principal and agent's payoffs determines revelation
- With biased beliefs: principal always initially caters to the bias
- Implications:
 - o flat tax an advertisement might just not work
 - wont work in the convex case
 - Nonlinear taxes might
- A lot more to be done:
 - Behavioral aspects: digital addiction, entertainment/suspense and surprise
 - Competition
 - Optimal regulation without violating first ammendment (in the U.S.)

THANK YOU