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Motivation: make it easier to write high-
level and efficient fork-join parallel code

void map(lo, hi, f) 
  if lo <= hi 
    return 
  else if lo + 1 == hi 
    f(lo) 
    return 
  int mid = (lo + hi) / 2 
  spawn map(lo, mid, f) 
        map(mid, hi, f) 
  sync

Fork point 
enables calls to 

go in parallel

Join point blocks 
until both calls 

return

Applies 
function f to 

iterates in the 
range [lo, hi)

Running example:
(using notation of the Cilk language extensions for C/C++)



Fibers and their overheads
• We consider languages with support for fork 

join, on a multicore system.


• Every fork point potentially creates a fiber. 


• Each fiber creation imposes a noticeable cost 
at runtime.


• The total cost can range from a few percent to 
a large enough to negate parallelism.

fiber = 
representation of 
a fork point that 

can move 
between cores by 

load balancing


aka: task 
descriptor, 
lightweight 

thread, spark, 
etc.Can we design a runtime technique 

that ensures, for any fork-join 
program, bounded overheads on the 

overall cost of fiber creation?
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Heartbeat Scheduling: a runtime technique that, for any fork join program and any input, 
ensures provably small overheads and good utilization.



Scheduling fork-join programs
void map(lo, hi, f) 
  if lo <= hi 
    return 
  else if lo + 1 == hi 
    f(lo) 
    return 
  int mid = (lo + hi) / 2 
  spawn map(lo, mid, f) 
        map(mid, hi, f) 
  sync

spawn map(…)

map(…) sync

Ready fibers

(what the scheduler 
sees at any instant)

map(…)

Time

Compiler Runtime
(where the 
scheduling 

occurs)



Decision to be made by the 
runtime for each fork point

Sequentialize latent parallelism

Enable latent parallelism

Delay latent parallelism

Delay creating a 
fiber, in case the 
fork point ends 

up being excess 
parallelism



The problem with manual 
granularity control

• The calling context


• e.g., function f might perform little to a 
lot of work, might perform a call to map


• The execution environment


• Vagaries of chip architecture


• Number of cores


• Operating system / software environment

An acceptable setting of grain 
depends on: 
(Tzannes et al 2014)

void map(lo, hi, f) 
  if hi - lo < grain 
    foreach i in [lo, hi) 
      f(i) 
    return 
  int mid = (lo + hi) / 2 
  spawn map(lo, mid, f) 
        map(mid, hi, f) 
  sync

Manual granularity control 
degrades code quality and is not 

performance portable. 

Manual 
serializing for 

small calls



Heartbeat scheduling

• At runtime, each core keeps track of how long it’s been since the 
previous fiber creation.


• When it’s been long enough, the core inspects the call stack of 
its current running fiber.


• If there’s some latent parallel call in the call stack, the core 
promotes the parallel call into a new fiber.

Key idea: amortize fiber-creation overhead against past work

Time…

…

Promotion 

is amortized against 

past work
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dependency 
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Work 

w = total # of vertices

Span 

s = length of critical 
path

Work

w = 21

Span s = 10Critical path

Expected time to 
execute on p cores

E[tp] ≤ w/p + O(s)
Work-stealing bound:
(Blumofe & Leiserson)

For any fork-join program:
The bound accounts 
for the cost of load 

balancing fibers, but 
assigns to each 

scheduling operation 
a unit cost.
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Time bound for heartbeat scheduling

w Work (total # vertices)

s Span (critical-path length)

Definitions:

tp Running time of the 
program on p cores

h = kτ 
We can pick h 

to be a 
multiple k of τ.

Work stealing: E[tp] ≤ w/p +                           O(s)

1. Bounded 
increase in 
overheads 


(e.g., 5% of work, if 
k = 20)

2. Bounded 
increase in 
the span

E[tp] ≤ w/p + (1/k * w/p) +  O(k * s)Work stealing with  
heartbeat, accounting 
for sched. overheads:

…

τ Cost of creating 
a fiber

h Heartbeat duration

(Per fiber overhead = τ/h.)



Prototype implementation

main()

map(0,4,f)

map(0,2,f)

Cactus stack  
( + heartbeat acceleration structure)

Promotable frames are 
linked together by a 

doubly linked list

Heartbeat mechanism

⏱The heartbeat can be 
realized by software 
polling or hardware 

interrupts.

Need to wake up and 
try to promote ≈ 

20-50μs.

Native support for parallel loops

Should avoid 
introducing a new 

stack frame for each 
parallel loop 
invocation.

Our solution: extend 
frame representation 

to expose loop 
descriptor.

For calling 
convention: we use 
the classic cactus-

stack representation.

Bookkeeping needed 
because we need 

O(1) access to top-
most promotable 

frame.
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Baseline = original 
authors’ Cilk code
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Heartbeat is almost always 
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sometimes a little slower

Code simplification: the baseline 
codes use several manual 

granularity-control techniques.


Heartbeat uses none!
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Formal bounds for scheduling fork join
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Leiserson ’99, Agarwal et al ’07, Acar et 
al ‘11

Heartbeat is the first to show 
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scheduling overheads for all 
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Heartbeat is the first in this 
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backed by end-to-end 

bounds.
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stronger guarantees than 
Oracle-Guided Granularity 

Control, and delivers state-of-
the-art in performance.

Weening ’89, Pehoushek et al ’90, Lopez 
et al ’96, Duran et al ’08, Acar et al ’16, 
Iwasaki et al ’16, Shintaro et al ‘16

Mohr et al ’91, Feeley ’93, Goldstein et al 
’96, Frigo et al ’98, Imam et al ’14, 
Tzannes et al ‘14



Conclusion
• Heartbeat scheduling supports really lightweight nested parallelism:


• It simplifies code: no need for manual granularity control.


• It is protected by formal bounds from adversary programs.


• It can, on ten benchmarks, achieve comparable or better 
performance to Cilk, a carefully engineered implementation.


• Future work:


• Optimized compiler implementation


• Generalizing beyond fork join (e.g., futures)


• Thanks for you attention!


