Heartbeat Scheduling

Provable Efficiency for Nested Parallelism

Umut Acar Arthur Charguéraud Adrien Guatto

Carnegie Mellon Inria & University of Inria
University and Inria Strasbourg, ICube
Mike Rainey Filip Sieczkowski

Inria & Indiana

University Inria

Motivation: make it easier to write high-
level and efficient fork-join parallel code

Running example:
(using notation of the Cilk language extensions for C/C++)

Applies

function f to
iterates in the
range [lo, hi)

» vold map(lo, hi, f)

if lo <= hi
return
else if lo + 1 == hi
f(lo)
return
int mid = (lo + hi) / 2 Fork point
spawn map (lo, mid, f) 7enables calls to
map (mid, hi, £f) go in parallel

sync ,\\\\\\\\

Join point blocks
until both calls
return

Fibers and their overheads

We consider languages with support for fork
join, on a multicore system.

Every fork point potentially creates a fiber.

Each fiber creation imposes a noticeable cost
at runtime.

The total cost can range from a few percent to
a large enough to negate parallelism.

Can we design a runtime technique
that ensures, for any fork-join
program, bounded overheads on the
overall cost of fiber creation?

fiber =
representation of
a fork point that
can move
between cores by
load balancing

aka: task
descriptor,
lightweight
thread, spark,
etc.

Related work & contribution

Main approaches to taming fiber-creation overheads

Related work & contribution

Main approaches to taming fiber-creation overheads

i

Reduce the cost of each
fiber creation

(useful, but not sufficient)

Related work & contribution

Main approaches to taming fiber-creation overheads

/\

Reduce the cost of each Reduce the number of fibers created
fiber creation (i.e., prune excess parallelism)

(useful, but not sufficient)

Related work & contribution

Main approaches to taming fiber-creation overheads

/\

Reduce the cost of each Reduce the number of fibers created
fiber creation (i.e., prune excess parallelism)

(useful, but not sufficient) /

Granularity control:
Prediction of running time
to throttle fiber creation

(depends on predicting
execution time, requires
additional information, not
always available)

Related work & contribution

Main approaches to taming fiber-creation overheads

/\

Reduce the cost of each Reduce the number of fibers created
fiber creation (i.e., prune excess parallelism)
(useful, but not sufficient) A
Granularity control: Lazy Scheduling:
Prediction of running time Delay creating a fiber until it’s
to throttle fiber creation needed to realize parallelism

(depends on predicting (no formal guarantees;
execution time, requires known adversarial inputs)

additional information, not
always available)

Related work & contribution

Main approaches to taming fiber-creation overheads

/\

Reduce the cost of each Reduce the number of fibers created
fiber creation (i.e., prune excess parallelism)
(useful, but not sufficient) A
Granularity control: Lazy Scheduling:
Prediction of running time Delay creating a fiber until it’s
to throttle fiber creation needed to realize parallelism

(depends on predicting (no formal guarantees;
execution time, requires known adversarial inputs)

additional information, not
always available)

Heartbeat Scheduling: a runtime technique that, for any fork join program and any input,
ensures provably small overheads and good utilization.

Scheduling fork-join programs

vold map(lo, hi, f)
1f lo <= hi
return
else 1f lo + 1 == hi
f(lo) Ready fibers
return (what the scheduler
int mid = (lo + hi) / 2 sees at any instant)
spawn map (lo, mid, f) l
map (mi1d, hi, £) o

sync

-

o *e """ ’
LN A3 Y4 ~ o [N [|
] ‘s S’l |‘ " : |
Compller :/ “ "' "\5: Runtlme
‘s . 'O
IRELE e el s (where the
: h scheduling
/ B P X occurs)

map(...)

map(.) ‘\\ _____ .: sync

Decision to be made by the
runtime for each fork point

Enable latent parallelism
—

Sequentialize latent parallelism

—0—0—0—0—0—0—0—-0—0—0—O—

Delay latent parallelism
— Delay creating a

| | fiber, in case the

1 fork point ends
/ up being excess
parallelism

The problem with manual
granularity control

void map(lo, hi, £] B An acceptable setting of grain
if hi - lo < grain depends on:
foreach 1 in [lo, hi) (Tzannes et al 2014)
T (3 :
(1) e The calling context
return —
int mid = (lo + hi) / 2 _ _ ,
spawn map (1o, mid, f) e e.g., function f might perform little to a
map (mid, hi, f) lot of work, might perform a call to map
sync Manual . .
. e The execution environment
serializing for
small calls e \Vagaries of chip architecture
* Number of cores
Manual granularity control e Operating system / software environment

degrades code quality and is not
performance portable.

Heartbeat scheduling

Key idea: amortize fiber-creation overhead against past work

&
=S MK ML B I I

Time —

Promotion
IS amortized against
past work

e At runtime, each core keeps track of how long it’s been since the
previous fiber creation.

e When it’s been long enough, the core inspects the call stack of
its current running fiber.

e |f there’s some latent parallel call in the call stack, the core
promotes the parallel call into a new fiber.

How heartbeat scheduling works

Heartbeat (alarm f
clock fires every
h cycles)

vold main ()
map (0, 4, £)
return

void map(lo, hi, £f)
if lo <= hi
return
else if lo + 1 == hi
f(lo)
return
int mid = (lo + hi) / 2
spawn map (lo, mid, £f)
map (mid, hi, f)
sync

How heartbeat scheduling works

Promotion

Heartbeat (alarm f
clock fires every
h cycles)

vold main ()
map (0, 4, £)

return
void map(lo, hi, f) Snapshot of the call
tE o <= hd stack, just after
return)
else if lo + 1 == hi second recursive call
f(lo)
return tO map'

int mid = (lo + hi) / 2
spawn map (lo, mid, £f)
map (mid, hi, f)

The stack grows
down.

sync

How heartbeat scheduling works

Create a new

Heartbeat (alarm f
clock fires every
h cycles)

vold main ()
map (0, 4, £)

return
void map(lo, hi, f) Snapshot of the call
tE o <= hd stack, just after
return)
else if lo + 1 == hi second recursive call
f(lo)
return tO map'

int mid = (lo + hi) / 2
spawn map (lo, mid, £f)
map (mid, hi, f)

The stack grows
down.

sync

How heartbeat scheduling works

Create a new

Heartbeat (alarm f
clock fires every
h cycles)

vold main ()
map (0, 4, £)

return
void map(lo, hi, £f) SnapShO’[Of the Ca”
tf lo <= hi stack, just after
return .
else if lo + 1 == hi second recursive call .
£(1o) Split the stack
return tO map'

int mid = (lo + hi) / 2
spawn map (lo, mid, £f)
map (mid, hi, f)

The stack grows
down.

sync

How heartbeat scheduling works

Heartbeat (alarm f

clock fires every
h cycles)

vold main ()
map (0, 4, £)

return
void map(lo, hi, f) Snapshot of the call
LE 1o <= hi stack, just after
return)
else if lo + 1 == hi second recursive call
f(lo) t
return O map'

int mid = (lo + hi) / 2
spawn map (lo, mid, £f)
map (mid, hi, f)

The stack grows
down.

sync

Create a new

Reqister
v\ g

dependency

edges

Split the stack

Cost model and time bound

Work
w = total # of vertices

Span
s = length of critical
path

Critical path — Spans =10

Cost model and time bound

Work

w = total # of vertices

Span
s = length of critical
path

Work-stealing bound
(Blumofe & Leiserson)

: For any fork-join program:
E[to] < w/p + O(s)
T

Expected time to
execute on p cores

The bound accounts
for the cost of load
balancing fibers, but
assigns to each
scheduling operation
a unit cost.

Time bound for heartbeat scheduling

Definitions:

W Work (total # vertices)

S Span (critical-path length)

t Running time of the
P program on p cores

Work stealing: E[ts] < w/p + O(s)

Time bound for heartbeat scheduling

Definitions: : : : : + + +
W Work (total # vertices) } | |
S Span (critical-path length) T Cost of creating h Heartbeat duration
a fiber

tp Running time of the

program on p cores (Per fiber overhead = 1/h.)

Work stealing: E[ts] < w/p + O(s)

Time bound for heartbeat scheduling

Definitions: : : : : + + +
W Work (total # vertices) } | |
S Span (critical-path length) T Cost of creating h Heartbeat duration
a fiber

tp Running time of the

program on p cores (Per fiber overhead = 1/h.)

Work stealing: E[tp] < W/p + Q(S) h = kT

We can pick h
to be a
multiple k of T.

Time bound for heartbeat scheduling

Definitions:

W Work (total # vertices)

S Span (critical-path length)

t Running time of the
P program on p cores

Work stealing:

Work stealing with
heartbeat, accounting
for sched. overheads:

=
=

1l <

IA

K

T Cost of creating

w/p +

w/p + (1/k * w/p) + O(k * s)

?

?

|

J

a fiber

J

h Heartbeat duration

(Per fiber overhead = 1/h.)

1. Bounded
Increase In
overheads
(e.g., 5% of work, if

k = 20)

O(s)

2. Bounded
Increase in
the span

h = kT

We can pick h
to be a
multiple k of T.

Prototype implementation

Heartbeat mechanism

Need to wake up and
try to promote =
20-50ps.

The heartbeat can be
realized by software
polling or hardware

Interrupts.

Native support for parallel loops

Should avoid
iIntroducing a new
stack frame for each
parallel loop
Invocation.

Our solution: extend
frame representation
to expose loop
descriptor.

Cactus stack
(+ heartbeat acceleration structure)

For calling
convention: we use
the classic cactus-

stack representation.

Bookkeeping needed
because we need
O(1) access to top-
most promotable
frame.

Promotable frames are
linked together by a
doubly linked list

Experimental results

25.00%

%
difference ;0.
N
execution
time] g I o
500% & EWE 5 5 8 g2 § § 8
between 5%8 gnggg
Heartbeat & 5
and
baseline s5q.000% Lower is
better for
Heartbeat.
-75.009%
X
& & & K
il Q & Q
A P ¥ \\e&
. _ O
Baseline = original &

authors’ Cilk code

bounded random

plummer
in square
kuzmin
happy
xyzrgb
cube
viat24
cube
viat24

S S & o
) . .
N Ran on machine with 1TB

RAM, using all 40 cores

Experimental results

25.00%

%

difference ;0.

N
execution
time
between
Heartbeat
and

basellne -50.00%

- NNO
-/5.00%0

Baseline = original
authors’ Cilk code

-25.00%

Heartbeat is almost always
faster than the baseline,
sometimes a little slower

N - -
e SRS s £ 2 £ B
g o 8B 2 g g8l
"§E°FE R
3
Lower is
better for
Heartbeat.
.
& \059(” .@""* .@'é’
N & R
P ¥ &
&)
\Q/

plummer
in square
kuzmin
happy
xyzrgb
cube
viat24
cube
viat24

459\\ & \\}sz;\ F & ©®
W) o (b* »
Q & Q¥ R
O Q,é'Q
) . .
® Ran on machine with 1TB

RAM, using all 40 cores

Experimental results

25.00%

Heartbeat is almost always
faster than the baseline,
sometimes a little slower

%
difference 0,
N
execution
time
between
Heartbeat
and
baseline -50.00%

-25.00%

random

-75.00%
2
5+
®

Baseline = original
authors’ Cilk code

=
g s B <« B E g
o & B 2 ® 85 £
- S 4 T W =
; 2 £ T E g
® 3
Lower is
better for
Heartbeat.
Y
& & &
K & L
P ¥ &S
0‘\

Code simplification: the baseline
codes use several manual
granularity-control techniques.

Heartbeat uses none!

plummer
in square
kuzmin
happy
xyzrgb
cube
viat24
cube
Mviat24

» & N & S O
e?"‘v\} N @0& & ¢ (\(\\Q
& O & G (&’b
O Q‘;\(\
& . .
N Ran on machine with 1TB

RAM, using all 40 cores

Related work

Formal bounds for scheduling fork join

Brent ’74, Arora et al '98, Blumofe &
Leiserson 99, Agarwal et al ’07, Acar et
al ‘11

Lazy-scheduling methods

Mohr et al ’91, Feeley '93, Goldstein et al
‘96, Frigo et al ’98, Imam et al 14,
Tzannes et al ‘14

Prediction-based methods

Weening '89, Pehoushek et al ’90, Lopez
et al 96, Duran et al '08, Acar et al 16,
lwasaki et al '16, Shintaro et al ‘16

T

e

T

Heartbeat is the first to show
analytical bounds on
scheduling overheads for all
fork join programs.

Heartbeat is the first in this
class of approaches to have a
state-of-the-art
Implementation and be
backed by end-to-end
bounds.

Heartbeat offers similar but
stronger guarantees than
Oracle-Guided Granularity
Control, and delivers state-of-
the-art in performance.

Conclusion

 Heartbeat scheduling supports really lightweight nested parallelism:
e |t simplifies code: no need for manual granularity control.
e |tis protected by formal bounds from adversary programs.

e |t can, on ten benchmarks, achieve comparable or better
performance to Cilk, a carefully engineered implementation.

e Future work:
e Optimized compiler implementation
e Generalizing beyond fork join (e.g., futures)

e Thanks for you attention!

