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ABSTRACT
Modern science and engineering is driven by massively large data

sets and its advance heavily relies on massively parallel computing

platforms such as Spark, MapReduce, and Hadoop. Theoretical mod-

els have been proposed to understand the power and limitations of

such platforms. Recent study of developed theoretical models has

led to the discovery of new algorithms that are fast and e�cient in

both theory and practice, thereby beginning to unlock their under-

lying power. Given recent promising results, the area has turned

its focus on discovering widely applicable algorithmic techniques

for solving problems e�ciently.

In this paper we make progress towards this goal by giving prin-

ciples for simulating a large class of sequential dynamic programs in

the distributed setting. In particular, we identify two key properties,

monotonicity and decomposibility, which allow us to derive e�cient

distributed algorithms for problems possessing the properties. We

showcase our framework by considering several core dynamic pro-

gramming applications, Longest Increasing Subsequence, Optimal

Binary Search Tree, and Weighted Interval Selection. For these

problems, we derive algorithms yielding solutions that are arbitrar-

ily close to the optimum, using O (1) rounds and Õ (n/m) memory

on each machine where n is the input size andm is the number of

machines available.

CCS CONCEPTS
• Theory of computation → Approximation algorithms
analysis; MapReduce algorithms; Massively parallel algo-
rithms;
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1 INTRODUCTION
The modern era is witnessing a revolution in the ability to scale

problems to massively large data sets. There have been several

innovations that have enabled computation to scale to this unprece-

dented level. A key breakthrough in scalability was the introduction

of fast, e�cient, easy-to-use massively parallel distributed comput-

ing frameworks such as MapReduce [20], Hadoop [1] and Spark [2]

and these frameworks have been critical to data-driven science, en-

gineering, and industry. The use of these frameworks have mostly

been developed by practitioners and applied researches with little

in�uence form the theoretical computer science community. This

is unlike other large data settings, such as parallel computing [24]

and streaming algorithms [37], where the algorithms community

has had a large impact on algorithms in production today.

These massively parallel frameworks have the potential to be

more useful than originally thought. Modeling and studying these

frameworks algorithmically has a potential to unlock their true

underlying power and expand their use to a rich class of applica-

tions. Towards this end, there has been an e�ort by the theoretical

computer science community to model the key underlying features

and constraints of these frameworks and discover algorithms using

the developed models.

The �rst models of massively parallel computation were intro-

duced for the MapReduce framework and several models have been

proposed [5, 12, 23, 26, 27, 31, 39, 40]. The theoretical study of these

frameworks started to increase rapidly after the introduction of the

MapReduce model of computation given in [31]. The model in [31]

has been re�ned and extended afterwards subsequently [5, 12, 40].

Perhaps the main advantage of the model in [31] was its simplicity

relative to others. The model identi�ed several key features which

could be obstructed otherwise in a plethora of system parameters.

The area has gained growing attention as the proposed theoretical

model given in [31] and its re�nements have led to the discovery

of novel algorithms which translated into e�cient algorithms in

practice [9, 10, 15, 17, 21–23, 31, 34, 36, 38, 42, 45].
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Theoretical Model. The model we consider in this paper, which is

arguably the most popular, is the following. Let n be the input size

andm be the number of machines, which is a part of the input. It is

assumed that the local memory on each machine should be at most

Θ̃(n/m) and the algorithm should allow for nϵ ≤ m ≤ n1−ϵ for

some constant ϵ > 0. The motivation for the memory and machine

constraints is that the number of machines,m, and local memory

size, M , on each machine should be much smaller than the input

size to the problem since these frameworks are used to process

large data sets. Further, the total memory available should not be

much larger than the input size, thus is restricted to Θ̃(n).
In this model, computation proceeds in rounds. During a round

each machine runs a polynomial time algorithm on the data as-

signed to the machine. No communication between machines is

allowed during a round. Between rounds, machines are allowed to

communicate so long as each machine receives no more communi-

cation than its memory. Any data output from a machine must be

computed locally from the data residing on the machine and ini-

tially the input data is distributed across machines arbitrarily. The

high level goal is to minimize the total number of rounds required,

as this captures the typical main bottleneck of network commu-

nication. The ultimate goal is developing O (1)-rounds algorithms,

which are highly desirable in practice, but today with the advent of

more e�cient distributed framework like Spark, O (logn)-rounds

algorithms are also applicable. The model is a special case of the

Bulk-Synchronous-Parallel (BSP) model [43], but has the advan-

tage of not having many parameters. This makes the algorithm

design clearer and streamlines the search for e�cient algorithms.

As mentioned, this model has become popular due to its connec-

tion to practice. See [5, 31] for comparison of this model to other

computing models such as PRAM and streaming models.

Many problems have been studied in this setting such as clus-

tering [10, 11, 29], submodular function optimization [22, 34, 38],

graph analysis [3, 9], and query optimization [12]. Two of the major

algorithmic techniques used are sketching [28, 30] and the sample-

and-prune technique [34]. Using these techniques, several sequen-

tial algorithms have been e�ciently simulated in the massively

distributed setting. For example, the work of [34] showed that the

sequential algorithm for submodular optimization, which appears

to have little use in parallel models, can actually be e�ciently sim-

ulated in the parallel setting.

These results have begun to explore the so-called holy-grail

question in parallel and distributed computing:

Is there a meta-algorithm that takes as input a
sequential algorithm and outputs an e�cient dis-
tributed algorithm? What kinds of problems admit
such a meta-algorithm?

Past work has shown that a large class of sequential greedy al-

gorithms can be e�ciently simulated in the distributed setting [34].

The looming question is, what other algorithms can be e�ciently

simulated in the massively distributed setting? How close can we

come to achieving the ideal meta-algorithm that can e�ciently

scale any sequential algorithm? Resolving these questions has the

potential for having impact in both theory and practice. Towards

reaching this goal it is of additional interest to introduce widely

applicable techniques that can be used to solve problems in the

massively parallel setting.

Simulating Dynamic Programming: E�ciently simulating dy-

namic programming algorithms is a clear target in the area. Dy-

namic programming is one of the most fundamental techniques

for solving problems sequentially and is an essential part of the

standard CS curriculum. The technique is of central use in various

�elds such as bioinformatics, economics, and operations research.

While this method has been a core algorithmic technique in the

past, as data sets become larger, the technique is being rendered

ine�ective and considered obsolete by practitioners. There is a

pressing need to develop techniques for running dynamic program-

ming methods e�ciently in the massively parallel environment.We

make progress to answering the holy-grail question with respect

to dynamic programming, focusing on the following question:

Are there principled guidlines for converting a se-
quential dynamic program into an e�cient dis-
tributed algorithm? The algorithm should run in
O (logn) rounds, ideally in O (1) rounds. What are
the common features of the problems that will make
themselves subject to such a framework?

These are challenging questions. Dynamic programs typically

have large space requirements and run in a sequential manner. It

is non-trivial to adapt such dynamic programs to the massively

parallel setting where each machine is constrained by a sublinear

memory size. Further, the number of rounds should be small for

the algorithms to be adopted in practice.

Our Results and Contributions: Our main contribution is in

identifying two key properties, monotonicity and decomposability
needed to simulate various dynamic programs in the massively

parallel model of computation and give principled guides for con-

verting a dynamic program into an e�cient distributed algorithm

when the underlying problem satis�es the two properties. The key

properties and the guides can be found in Section 2. To demon-

strate the e�ectiveness of our principled guides, we consider three

canonical dynamic program applications: Optimal Binary Search

Tree (OBST), Weighted Interval Selection (IS), and Longest Increas-

ing Subsequence (LIS). These problems will be formally de�ned in

Sections 4, 5, 3, respectively.

More speci�cally, our results are as follows:

• Guided by the monotonicity and decomposability prop-

erties, we give O (1) round algorithms. For any constant

0 < ϵ < 1, all algorithms are (1+ϵ )-approximations and use

Õ (n) aggregate memory. Let M = Õ (nδ ) be the memory

usage on each machine for some constant δ > 0. Specif-

ically, the number of rounds and local memory used by

each algorithm is as follows.

– The algorithm for Optimal Binary Search Tree runs

in O ( 1δ ) rounds for any δ > 0 (Section 3).

– The algorithm for Longest Increasing Subsequence

runs in O ( 1

ϵ 2 ) rounds for any δ > 3/4 (Section 5).

– The algorithm for Weighted Interval Selection runs in

O ( 1δ (log
1

ϵ + log
1

δ )) rounds for any δ > 0 (Section 4).

The above algorithmic results are involved. To showcase our

main algorithmic principles, we derive O (logn) rounds algorithms
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for interval selection and longest increasing subsequence. All algo-

rithms have an approximation factor 1 + ϵ , and use a near-linear

aggregate memory Õ (n) for an arbitrary constant 0 < ϵ < 1.

There have been a few previous works on individual problems

subject to dynamic programming in other models which readily

translate into results in the theoretical model we consider in this

paper. For example, the work in the BSP model in [33] implies a

O (logn)-rounds algorithm for the LIS problem in our model. To the

best of our knowledge, there has been no attempt to give principled

guides for deriving e�cient distributed algorithms from sequen-

tial dynamic programming. Further, with the aid of the two key

properties, we give the �rst O (1)-rounds algorithms for all the

aforementioned problems.

Our Related Work: Dynamic programming was extensively stud-

ied in the standard PRAM model [6, 25]. For example, the optimal

order of matrix multiplications problem [13, 14, 18, 19, 41, 44], the

string editing problem [7], the longest increasing subsequence and

longest common subsequence problems [16, 35], and the tree dy-

namic programming problems [8, 32, 41]. All these works require

O (logn) rounds in our massively parallel model. Dynamic program-

ming was studied also in the BSP model, e.g. [4, 33]. All the previous

work requires O (logn) rounds if the number of machine is sublin-

ear in the input size, which is a main constraint of our massively

parallel model, and we do not know how to extend the previous

work to obtain O (1)-round algorithms.

2 KEY PRINCIPLES
In this section we present two key properties that lead to e�cient

distributed algorithms when the problem in consideration possesses

them. The two key properties we identify are monotonicity and de-
composibility. The �rst property alone is su�cient for the existence

of algorithms running in O (logn) rounds for some problems, but

reducing the number of rounds to O (1) additionally requires the

second property. Throughout this section, we will focus on com-

puting a near optimum value since one can �nd an actual solution

achieving the near optimum using a standard trace-back method.

Key Properties
(1) Monotonicity: A sub-problem has no greater (smaller, resp.)

optimum if the objective is to be maximized (minimized, resp.). (2)

Decomposibility: The input can be decomposed into a two-level

laminar family of partial input, where an upper level partial input

is called a group and a lower level partial input is called a block,

such that:

• A nearly optimal solution (for the whole input) can be

constructed by concatenating solutions for groups.

• A nearly optimal solution for each group can be con-

structed from O (1) blocks.

We illustrate how we use these properties to derive an e�cient

distributed algorithm from a sequential dynamic programming us-

ing the (Weighted) Interval Selection problem (IS) as an example.

Our main results are for the LIS and OBST problems, but here we

have chosen the simplest problem, IS, only for the purpose of illus-

tration to clearly explain the high-level ideas without introducing

heavy notations. TheO (1)-round algorithms for other two problems

we consider, LIS and OBST, require extra non-trivial observations

about the optimal solution’s structural properties; although, the

derivation of their distributed algorithms use the key properties in

similar manners. We also give an example that doesn’t satisfy the

monotonicity property, for which we believe no O (1) approximate

O (1)-round algorithm exists.

2.1 An Example Satisfying the Key Properties:
Weighted Interval Selection

Let’s �rst formally de�ne the Weighted Interval Seletion (IS) prob-

lem. The input to IS is a collection of intervals {Ii = (ai ,bi )}i ∈[n]
with their respective weights {wi }i ∈[n]. The goal is to choose a sub-

set of disjoint intervals with the maximum weight. It is well-known

that this problem can be solved in polynomial time using DP.

Standard Sequential DP. We start by reviewing a simple DP for

IS. Assume that intervals are ordered in increasing order of their

start points; sorting by end points will be symmetric but we choose

to sort by start points since it will simplify notation when we de-

rive distributed algorithms. Let OPT(S ) denote the optimal solution

to the instance consisting of a subset S of intervals, or the opti-

mal value depending on the context. Let A(i ) denote OPT({Ii , Ii+1,
Ii+2, ..., In }). Our goal is to compute A(1) which can be computed

using the following recursion:

A(i ) = max{A(i + 1),wi +A(j )}

where j = argminj′ (bi < aj′ ) when i ≤ n; and A(n + 1) = 0.

AnO (logn)-Round Distributed Algorithm using Monotonic-
ity. The problem of the above recursion is that it is too sequential

to be directly translated into one working in the distributed set-

ting. We distribute the input intervals equally to machines keeping

the sorted order; for example, the �rst machine gets n/m intervals

with the earliest start points
1
. Since each machine can only see a

subset of intervals, it is natural to de�ne a subproblem that each

machine faces. To be able to append a solution to a subproblem

to other solutions we obtain from other machines, we de�ne a

subproblem by adding another parameter. Let B (i, j ) denote the

maximum weight subset of intervals that start no earlier than Ii but

end before Ij starts; note that intervals corresponding to B (i, j ) end

before intervals corresponding to B (j, j ′) start, hence can be cho-

sen simultaneously. However, the subproblems require a quadratic

memory usage, which is not a�ordable in our distributed setting.

We now observe that the subproblem B (i, j ) satis�es the mono-
tonicity property: for any i ′ ≤ i and j ′ ≥ j, B (i ′, j ′) ≥ B (i, j ). Using

this property, we de�ne a similar entry C (i,w ) by swapping j with
the target value: C (i,w ) = minj′:B (i, j′)≥w j ′; if no such j ′ exists,

then set C (i,w ) = ∞. At �rst sight, this seems worse since j can

have at most n values while w can have a much wider range of

values. Hence, we discretize the second parameter w . In this case,

it turns out that we only need O (logn) di�erent values of w . What

the monotonicity property guarantees is the following: if we have
a feasible solution including the subset of intervals corresponding to
C (i,w ), then we still get a feasible schedule when replacing it with
that corresponding toC (i,w ′) forw ′ ≤ w . Ifw ′ is close tow , we lose

1
Note that sorting can be done in the massively parallel (distributed) setting in O (1)

rounds so long as the machines have memory at least nδ for constant δ > 0. This

follows by adapting sample sort.

800



STOC’17, June 2017, Montreal, Canada Sungjin Im, Benjamin Moseley, and Xiaorui Sun

only a small weight. Note that the number of entries {C (i,w )}i,w
is almost linear in n.

We compute entries {C (i,w )}i,w , particularly C (1,w ), in

O (logn) rounds – argmaxw (C (1,w ) < ∞) will be within (1 + ϵ )
factor of the optimum for a �xed constant ϵ > 0. For the purpose of

illustration, we focus on the �rst machine and consider an interval

Ii assigned to the machine. To simplify the argument, assume that

the kth machine has a copy of the partial input the k + 1th machine

has for all k . Let C ′(i,w ) be the DP entry corresponding to C (i,w ).
In the beginning, if C (i,w ) ≤ n/m, then it means that the machine

has all the information needed to compute C (i,w ), so we have

C ′(i,w ) = C (i,w ); note that the �rst machine has 2n/m intervals

with the earliest start times. Otherwise, we have C ′(i,w ) = ∞. In

the subsequent rounds, we consider all pairs of (w1,w2) such that

w1 +w2 ' w . Here we use ' to mean that the quantities are within

a 1 + ϵ factor of each other. If C ′(i,w1) = j1, then the machine

gets C ′(j1,w2) = j2 from the machine having the interval Ij1 . This

means thatC ′(i,w ′) ≤ j2 wherew ′ ' w . By taking the minimum of

j2 over all pairs (this can be done in parallel), the one-round update

of the DP entries completes. Here we approximate w by a slightly

smaller w ′, which keeps the feasibility of the �nal solution due to

the monotonicity property. In the lth iteration,C ′(i,w ) is computed

based on the partial input on 2
l

machines. Hence O (logn) rounds

su�ce to complete the computation of {C ′(i,w )}.
O (1) Rounds usingMonotonicity andDecomposability.What

the previous O (logn)-round algorithm essentially does is approx-

imately computing C (1,w ) by considering partial inputs from a

exponentially increasing number of machines simultaneously. We

can speed up this process in terms of the number of rounds by

doubling the number of ‘crossing’ intervals considered in the cur-

rent solution. A crossing interval is an interval that ends later than

all other intervals on the same machine end. Intuitively, crossing

intervals create dependencies across machines. We observe that the
problem satis�es the decomposibility property. Although the property
itself is de�ned standalone, we explain it in the context of the dis-

tributed setting for a more intuitive explanation. We observe that

there is a nearly optimal solution that is decomposed into groups of

intervals where each group includes at mostO (1) crossing intervals

– further, each of the groups consists of intervals from a disjoint set

of machines. Thus, once we compute a (nearly optimal) solution

to each group in parallel, we only need to concatenate solutions

from groups that are disjoint over machines. Computing the solu-

tion to each group can be done in O (1) rounds since it has at most

O (1) crossing intervals; here a block is the partial input on each

machine, thus the solution comes from O (1) machines. Since we

don’t know how to partition the input into groups a priori, we will

create groups that are potentially useful but not necessarily pair-

wise disjoint over machines. However, at this point, the solutions to

groups can be further simpli�ed by machine indices since a nearly

optimal solution can be constructed from groups that are disjoint

over machines. This reduces the input size, and we recurse until

the input becomes su�ciently small to �t into a single machine.

2.2 An Example Not Satisfying the
Monotonicity Property

Consider a DAG G = (V ,E) consisting of

√
n levels of nodes where

each level has exactly

√
n nodes. Each node i has weight wi . Arcs

exist only from each level l to the next level l + 1. Assume that

the DAG is sparse. The goal is to �nd a maximum weight path. Let

A(j ) denote the weight of the maximum weight path ending with

vertex j. If we know A(i ) for all nodes i in level l , we can compute

A(j ) for all j in the next level l + 1: A(j ) := max(i, j )∈E A(i ) + w j .

A natural sub-problem we can consider for this problem is B (i, j ),
the maximum weight of all paths starting and ending with nodes i
and j , respectively. This problem does not satisfy the monotonicity

property, meaning that B (i, j ) can increase or decrease when we

change the value of j. Storing B (i, j ) for all pairs (i, j ) consumes

too much memory. We are not aware of any algorithm that uses a

sublinear memory while running in O (logn) rounds.

3 OPTIMAL BINARY SEARCH TREE
In this section, we consider the Optimal Binary Search Tree problem

(OBST) and give a (1+ϵ )-approximation running inO (1/δ ) rounds.

The input to OBST consists of n elements, 1, 2, 3, · · · ,n with their

respective weights/probabilities,w (1),w (2),w (3), · · · ,w (n), where∑n
i=1w (i ) = 1. For simplicity, we assume w.l.o.g. that element i has

key value i . The goal of the OBST problem is to �nd a binary search

tree (BST) for elements [n] so as to minimize the expected search

cost, i.e.,

∑n
i=1w (i ) · dep(i ), where dep(i ) is the depth of element i

in the binary search tree; the root has depth 1.

Standard Sequential DP. Let’s �rst review a standard sequential

DP for OBST. De�ne w (i, j ) :=
∑j
k=i w (k ). Let Ti, j denote the opti-

mal binary search subtree for elements, i, i + 1, . . . , j , and OPT(i, j )
the cost of Ti, j . We observe the follow recursion:

OPT(i, j ) = min

i≤k≤j

(
OPT(i,k − 1) +OPT(k + 1, j )

)
+w (i, j ) (1)

for all 1 ≤ i ≤ j ≤ n, and OPT(i, j ) = 0 when i > j.

3.1 A High-level Overview of a O (1/δ )-round
Algorithm

For the OBST problem, we do not give a separate overview of a

O (logn)-round algorithm since it is very similar to the O (1/δ )-
round algorithm we will discuss. In the following, we will give a

high-level overview of a O (1/δ )-round algorithm explaining how

the two key properties are used in deriving the algorithm.

As before, we swap the target cost/value v with j. Let last
∗ (i,v )

denote the maximum j such that there is a BST of cost at mostv for

elements i, i + 1, · · · , j. Since the objective is to be minimized, the

monotonicity property is similarly de�ned but with the inequal-

ity �ipped. Note that if v ≥ v ′, then last
∗ (i,v ) ≥ last

∗ (i,v ′). Let

last(i,v ) be the entry corresponding to last
∗ (i,v ), which we would

like to compute. By preprocessing the input and discretizing the

target values, we only need to keep O (logn) entries, last(i,v ), for

each element i . Our goal is to obtain last(·, ·) such that last(i,v ′) ≥
last
∗ (i,v ) for v ′ ' v . What this means is quite intuitive: We can

construct a binary search subtree, with a comparable cost, that

starts from each element i and includes as many elements as the
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corresponding optimal subtree. Hence, we will be done if we can

compute last(·, ·) in a distributed fashion.

Unfortunately, computing last(·, ·) in a distributed manner is a

non-trivial task since computing an entry last(i,v ) may require

access to too many elements which cannot �t into a single machine.

One natural approach would be exponentially increasing the num-

ber of elements to be considered; let’s call this quantity ‘width.’

Let’s take a close look at this computation process to see the hidden

challenges. Suppose we would like to approximate OPT(i, j ), the

cost ofTi, j , when the number of elements to be considered, j − i + 1,

is much larger than a machine’s local memory size. Let k be the root

ofTi, j . If we already know approximate values of OPT(i,k − 1) and

OPT(k + 1, j ), we will be able to compute OPT(i, j ) approximately.

If k is not too close to i or j, by appropriately overlapping two sets

of elements, {i, i+1, · · · ,k1} and {k2,k2+1, · · · , j}, we can increase

the number of elements in consideration by a constant factor: Say

v1 ' OPT(i,k − 1) and v2 ' OPT(k + 1, j ). Intuitively, approximate

costs of Ti,k−1 and Tk+1, j can be recovered from last(i,v1) and

last(k + 1,v2). Hence if we know that k is roughly in the ‘middle’

of the elements i, i + 1, · · · , j, then by querying last(k ′,v2) for a

smaller number of candidate elements k ′ for the root node of Ti, j
that can be put into a single machine, we will be able to e�ectively

increase the width over iterations.

However, this may not be the case when elements have very

di�erent weights. To overcome this challenge we use another trick

of grouping elements into blocks of similar weights. Fortunately, we

can show that k is roughly in the ‘weighted’ middle of elements i, i+
1, · · · , j . Further, we show that we can add or ignore some elements

in approximately computing last(i,v ). Thus, we recursively build

a hierarchical/laminar block system where the upper level is an

abstraction of the lower level, and we gradually compress last(·, ·)
according to the set of blocks in each level. Here we have to be

careful with grouping elements since some elements can have huge

weights, so must remain as singletons in some cases. The block

system can be viewed as an application of the decomposibility

property.

Overall, our dynamic program uses two di�erent types of

sketches: (i) last(·, ·) to simplify the DP entries by discretizing the

target values based on the monotonicity property, and (ii) a hier-

archical block system of elements where last(·, ·) is projected on

blocks in each level to be compressed based on the decomposibility

property.

3.2 Useful Properties of Optimal Subtrees
We observe that the OBST problem satis�es the monotonicity prop-

erty.

Proposition 3.1 (Monotonicity). For any 1 ≤ i ′ ≤ i ≤ j ≤
j ′ ≤ n, OPT(i, j ) ≤ OPT(i ′, j ′).

The following claim asserts that the cost of an optimal subtree is

within factorO (logn) of the total weight of elements in the subtree.

Claim 3.2. w (i, j ) ≤ OPT(i, j ) ≤ dlognew (i, j ).

Proof. The lower bound is straightforward to see since every

node has depth at least 1. The upper bound follows since one can

pack all elements into a tree of depth dlogne. �

We �rst show that one can assume w.l.o.g. that all elements have

weights at least
ϵ

10n2
. We say that such elements are non-negligible

and the other elements are negligible.

Lemma 3.3. Let T := T1,n be the optimal tree for the entire set of
elements. Let T ′ be the optimal tree for the non-negligible elements.
Then, we have (1 − ϵ/10)cost(T ) ≤ cost(T ′) ≤ cost(T ).

Proof. The upper bound immediately follows from Proposi-

tion 3.1; although the proposition is stated only for sets of consecu-

tive elements, it is straightforward to see that monotonicity holds

for any two sets of elements where one set is a subset of the other.

To see that the lower bound holds, iteratively add each negligible

element to T ′ as a new leaf node, which increases the cost by at

most n · ϵ
10n2

= ϵ
10n . Hence we have cost(T ) ≤ cost(T ′) + ϵ/10.

By Claim 3.2, we have cost(T ) ≥ w (1,n) = 1. Thus, cost(T ′) ≥
cost(T ) − ϵ/10 ≥ (1 − ϵ/10)cost(T ). �

Since the proof of the lower bound in Lemma 3.3 only uses the

obvious fact that any node has depth at most n, we can add the

negligible elements later only ensuring that the resulting tree is a

valid binary search tree. Since it can be done in a straightforward

manner usingO (1/δ ) additional rounds, henceforth we assume that

all elements are non-negligible.

Next, we observe that any optimal subtree must be ‘balanced’ in

terms of weights.

Claim 3.4. Let i ≤ k ≤ j be the element associated with the root
ofTi, j . We havew (i,k − 1) ≤ 2w (i, j )/3 andw (k + 1, j ) ≤ 2w (i, j )/3.

Proof. Assume w.l.o.g. that w (i, j ) = 1 by scaling elements’

weights. We only prove the �rst inequality since the other can

be proved symmetrically. For the sake of contradiction assume

w (i,k − 1) > 2/3. Let T = Ti, j and ` be the root of the left subtree.

From the recursion (1) on the optimal subtrees, we have

OPT(i, j ) = cost(T ) = OPT(i, ` − 1) +OPT(` + 1,k − 1) (2)

+OPT(k + 1, j ) +w (i,k − 1) +w (i, j )

We consider two cases depending on the value of w (i, `).

Case (i). w (i, `) > 1/3. In this case, we draw a contradiction by

constructing a new tree T ′ with a smaller cost for i, i + 1, · · · , j
that has ` as root, and Ti, `−1 and T`+1, j as the root’s left and right

subtrees, respectively. We have

cost(T ′) =OPT(i, ` − 1) +OPT(` + 1, j ) +w (i, j )

≤OPT(i, ` − 1) +OPT(` + 1,k − 1)

+OPT(k + 1, j ) +w (` + 1, j ) +w (i, j )

Knowing that i < ` < k < j and w (k, j ) ≤ 1 −w (i,k − 1) < 1/3, we

have OPT(i, j ) − cost(T ′) ≥ w (i, `) −w (k, j ) > 0. This contradicts

to T ’s optimality.

Case (ii).w (i, `) ≤ 1/3. Let r be the root ofT`+1,k−1. Expand Eq. (2)

by plugging in OPT(` + 1,k − 1) = OPT(` + 1, r − 1) + OPT(r +
1,k − 1) +w (` + 1,k − 1):

OPT(i, j ) = OPT(i, ` − 1) + OPT(` + 1, r − 1) + OPT(r + 1,k − 1)

+OPT(k + 1, j ) +w (` + 1,k − 1) +w (i,k − 1) +w (i, j ).
(3)
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Consider a new treeT ′′ for elements i, i + 1, · · · , j having r as root,

andTi,r−1 andTr+1, j as the left and right subtrees, respectively. We

have

cost(T ′′) = OPT(i, r − 1) +OPT(r + 1, j ) +w (i, j )

≤ OPT(i, ` − 1) +OPT(` + 1, r − 1) +OPT(r + 1,k − 1)

+OPT(k + 1, j ) +w (i, r − 1) +w (r + 1, j ) +w (i, j )

where the inequality follows by making ` (k , resp.) as the root of the

subtree for elements i, i + 1, · · · , r − 1 (elements, r + 1, r + 2, · · · , j ,
resp.).

Knowing that OPT(` + 1,k − 1) ≤ OPT(` + 1, r − 1) +OPT(r +
1,k − 1) +w (` + 1,k − 1), we have,

OPT(i, j ) − cost(T ′′)

≥ w (i,k − 1) −w (r + 1, j ) +w (` + 1,k − 1) −w (i, r − 1)

= w (i, r ) −w (k, j ) +w (` + 1,k − 1) −w (i, r − 1)

≥ w (` + 1,k − 1) −w (k, j ) > 0

The last inequality follows from the fact that w (` + 1,k − 1) =
w (i,k − 1) −w (i, `) > 1/3 and w (k, j ) = w (i, j ) −w (i,k − 1) < 1/3.

This contradicts to the fact thatT is the optimal tree for i, i+1, · · · , j ,
proving w (i,k − 1) ≤ 2w (i, j )/3. �

The following claim states that the cost of an optimal subtree

changes only little when some small weight elements are added or

ignored. The claim will allow us to consider subtrees over ‘blocks’

of elements rather than elements and de�ne a hierarchical block

system so as to compress the cost information over iterations. Intu-

itively, the claim holds since Claim 3.4 implies that the tree (consist-

ing of non-negligible elements) has depthO (logn), thus an element

i can contribute to the cost by O (logn)w (i ).

Claim 3.5. Assume 1 ≤ i ′ ≤ i ≤ j ≤ j ′ ≤ n such that w (i, j ) ≥
(1 − α )w (i ′, j ′) for some 0 < α < 1

12 logn . Then OPT(i, j ) ≥ (1 −

12α logn)OPT(i ′, j ′).

Proof. We show that w (i, j ) ≥ (1 − α )w (i ′, j ) implies

OPT(i, j ) ≥ (1− 6α logn)OPT(i ′, j ). Then the lemma is obtained by

applying this argument twice. We �rst construct a binary search

tree for {vi′ , . . . ,vj } based onTi, j . We start from root ofTi, j and go

left until the current subtree has total weight less than w (i ′, i − 1).
Letk denote the root of the current subtree and r be the largest index

of the current subtree (current subtree is Ti,r ). Let d = dep(k ). We

replace the current subtree by a tree with i as the root,Ti′,i−1 as the

left subtree andTi,r \i be the right subtree, and denote this new tree

asT ′. We have OPT(T ′)−OPT(T ) < OPT(i ′, i−1)+w (i ′, i−1) ·d+
w (i, r ) ≤ w (i ′, i − 1) (dlogne +d + 1). If d ≤ 4 logn, then OPT(T ) >
OPT(T ′) − 6 logn · w (i ′, i − 1) ≥ OPT(T ′) − 6 lognαw (i, j ) ≥
(1 − 6α logn)OPT(T ′) ≥ (1 − 6α logn)OPT(i ′, j ). Otherwise, we

have d > 4 logn. By Claim 3.4, OPT(T ) ≥ w (i ′, i − 1) ·
(
3

2

)d−2
>

w (i ′, i − 1) · n2. Hence

OPT(T ) > OPT(T ′) −w (i ′, i − 1) (dlogne + d + 1)

> OPT(T ′)
(
1 −
dlogne + d + 1

n2

)
> (1 − 6α logn)OPT(T ′)

�

3.3 O (1/δ )-round Algorithm
This section is devoted to giving a O (1/δ )-round algorithm for

OBST. Recall that we assume w.l.o.g. that all elements have weight at

least
ϵ

10n2
; see Lemma 3.3. Extending the notation w (·), let w (S ) :=∑

i ∈S w (i ).

De�nition 3.6 (Block System). A block B = (sB , tB ) is a consecu-

tive sequence of elements {sB , sB + 1, · · · , tB }. Let B = {B1,B2, . . . }
be an ordered set of blocks. Given a weight width parameter `, we

say B is an `-block system if

(1) B is a partition of the elements, [n], i.e., every node i ∈
[n] belongs to one block; and no two distinct blocks have

common elements.

(2) Blocks are ordered in increasing order of their smallest

(starting) elements, i.e., sBa < sBb if a < b.

(3) For any two consecutive blocks, Ba ,Ba+1 ∈ B, w (Ba ) +
w (Ba+1) > `.

Let |B | be the number of elements in block B. The �rst (last,

resp.) element in B is called B’s starting (ending, resp.) element, and

denoted as sB (tB , resp.). To avoid double subscript, for an indexed

block Ba , we may use sa and tb for sBa and tBa respectively if the

notation is clear from context. Let |B| be the number of blocks

in B. Given a block system B, let w (Ba ,Bb ) :=
∑b
c=a w (Bc ) =∑tBb

i=sBa
w (i ). A block’s weight is de�ned as the total weight of the

elements in the block.

Recursively Constructing aHierarchical Block System. From

the de�nition of block system, note that a block system is ‘coarser’

when the weight width parameter ` is larger. Intuitively, the bot-

tom level of our DP is de�ned over a block system with the small-

est width parameter and the top level over that with the largest

width parameter. We recursively build a hierarchical block sys-

tem so that Bh is a re�nement of Bh+1. The initial system is

B0 := {{1}, {2}, {3}, · · · , {n}}. Let α := δ/4. The block system Bh
has width parameter `h := ϵ

10n2
n(α+2)h = `0n

αh
. Given Bh , one

can construct Bh+1 by considering blocks in Bh in the given order

and aggregating a maximal collection of blocks that does not exceed

weight `h+1; if a block in Bh has weight greater than `h+1, it is

added to Bh+1 without being merged with other blocks in Bh . To

parallelize this, we can consider in parallel each maximal collection

of blocks in Bh with weight less than `h+1 and partition it into

blocks of aggregate weight roughly `h+1. It is easy to see that this

only needs O (1) rounds. Our algorithm and analysis still work as

long as w (Ba ) +w (Ba+1) = Ω(`) in the third requirement in the

de�nition of block system. To make our presentation more trans-

parent, we assume that Bh+1 is constructed from Bh as described

above.

Fact 3.7. For any h,
• Bh is an `h -block system.
• Any block in Bh with weight greater than `h has only one

element.
• |Bh | ≤

2

`h
+ 1.

E�cient Dynamic Programming over the Hierarchical
Block System. We de�ne lasth (a,q) over each block system Bh ,

which has the following meaning: if lasth (a,q) = b, then we
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know how to construct a BST of cost no greater than vq :=
ϵ

10n2
(1+ϵ0)

q
(q is a non-negative integer) for elements in the blocks

Ba ,Ba+1, · · · ,Bb in the block system Bh where ϵ0 =
ϵ

100 logn .

Further, we will ensure that the BST is almost optimal when

`hn
α ≤ w (Ba ,Bb ) ≤ `hn

2α
. In other words, lasth (a,q) o�ers a

compact description of the cost of every binary search tree when

the aggregate weight of the elements in the tree is considerably

larger than but not so far from `h . Since `h increases by a factor of

nα in each iteration, we will only need O (1/α ) = O (1/δ ) iterations

to approximate the cost of the BST for every subset of consecutive

elements. Notice that there are two types of ‘sketches’ here: First,

the cost vq := ϵ
10n2

(1 + ϵ0)
q

is an exponentially discretized value;

and second, subtrees are parameterized by blocks Ba ,Bb rather

than all possible pairs of elements. The �rst sketch is enabled by

the monotonicity property. The second sketch is justi�ed since

we showed in Claim 3.5 that adding elements of small aggregate

weights to the front or back changes the cost very little, and each

individual block has small weight relative to the total weight of

elements in the tree we need to consider in each iteration; this is

closely tied to the decomposibility property.

We formally describe how we compute lasth (a,q) over iterations,

which is de�ned overBh ,h ∈ {0, 1, 2, · · · ,h1}whereh1 is de�ned as

the smallest h such that `hn
2α ≥ 1; recall that the total weight of all

elements is 1. When h = 0, recall that B0 := {{1}, {2}, {3}, · · · , {n}}.
Set last0 (a,q) as the minimum b ≥ a such that the BST for a,a +
1, · · · ,b has cost at most vq for all q such that `0n

α ≤ vq ≤ `0n
2α

;

note that for such q, b − a + 1 < nδ since every element has weight

at least `0 =
ϵ

10n2
. (We can compute last0 (a,q) for larger values

of q, but doing so up to vq ≤ `0n
2α

will su�ce for the recursion

to work). The computation can be done in parallel by assigning

elements 1 to 2nδ to the �rst machine, elements nδ + 1 to 3nδ to

the second machine and so on.

In the following we de�ne cost
′
h (Ba ,Bb ) which can be viewed

as an approximate cost of the optimal BST for the elements in the

blocks in Bh from Ba to Bb . It means that we can construct a BST of

cost at most cost
′
h (Ba ,Bb ) for those elements. The discretized cost

is derived from lasth (a, r ). Thus, cost
′
h and lasth are equivalent in

terms of determining the cost of a subtree starting and ending with

blocks in Bh – the only di�erence is that lasth is more compact

than cost
′
h .

cost
′(Ba ,Bb ) =




0 if a > b

vr := ϵ
10n2

(1 + ϵ0)
r

otherwise

where r is the smallest integer such that lasth (a, r ) ≥ b.

We obtain lasth+1 (thus cost
′
h+1) from lasth using the following

two steps. We will often call the total weight of elements in a

subtree as weight width. Recall that vq := `0 (1 + ϵ0)
q

. We repeat

for 0 ≤ h ≤ h1 – intuitively, h1 is a su�ciently large weight width

(close to 1) that allows us to see the entire set of elements in a

hierarchically compressed fashion.

(1) Computing cost
′
h to a higher weight width.

Given cost
′
h (a,v ) for all blocks Ba ∈ Bh and v such that

`hn
αh ≤ vq ≤ `hn

2αh
, we further compute cost

′
h (a,v )

for v such that `hn
αh ≤ vq ≤ `hn

3αh
using the following

recursion:

(a) Let cost(Ba ,Bb ) =

min

a≤b0≤b :
w (Ba,Bb

0
−1 )<3w (Ba,Bb )/4,

w (Bb
0
+1,Bb )<3w (Ba,Bb )/4




cost
′(Ba ,Bb0 ) + cost

′(Bb0 ,Bb ) +w (Ba ,Bb )

if |Bb0 | > 1

cost
′(Ba ,Bb0−1) + cost

′(Bb0+1,Bb ) +w (Ba ,Bb )

if |Bb0 | = 1

(4)

and root(Ba ,Bb ) be the b0 that minimizes Eq. (4).

(b) Set lasth (a,q) as the minimum b such that

costh (Ba ,Bb′ ) ≤ vq for all b ′ ≤ b.

(2) Compressing cost
′
h via projection into a higher level block

system, Bh+1:

For every Bx = (sx , tx ) ∈ Bh+1, denote Ba ∈ Bh such that

sa = sx . For any integer q such that `hn
2α ≤ vq ≤ `hn

3α
,

let By be the block in Bh+1 containing B
last(a,q ) ∈ Bh .

lasth+1 (x ,q) =



y if ty = t
lasth (a,q )

y − 1 if ty , t
lasth (a,q )

From the previous step in the recursion, we have computed

cost
′
h (Ba ,Bb ) (more precisely, the corresponding lasth ) for some

blocks in Ba ,Bb ∈ Bh . We keep the value of cost
′
h (Ba ,Bb ) only

up to a certain weight width since it is a good approximate esti-

mate only when the weight width, i.e. the aggregate weight of the

elements in the blocks in Bh from Ba through Bb , is in a certain

range depending on `h . Recall that in the `h -block system Bh , each

block in Bh has weight about `h .
2

Since each machine has mem-

ory Θ̃(nδ ), each machine can see elements of aggregate weight

`hn
δ = `hn

4α
. By placing the starting elements of the �rst 2nδ

blocks in Bh on the �rst machine, and those of the blocks from

the (nδ + 1)th to the 3nδ th on the second machine, and so on, we

can surely extend cost
′
h (Ba ,Bb ) up to a weight width of `hn

3α
in

distributed fashion. This requires only O (1) rounds.

In the �rst step, we derive cost
′
h from lasth by slightly over-

estimating the cost. The sketch lasth only tells us what blocks we

can include in a BST without exceeding a discretized cost; dis-

cretized costs are powers of (1 + ϵ0). By over-estimating the cost

by a factor of (1 + ϵ0), we can safely estimate the cost. There are

two cases we consider in computing cost(Ba ,Bb ). If a block has a

huge weight (it only happens when the block is a singleton element

set; see Fact 3.7) and is chosen as the root (the second case), we

have to explicitly compute the additional cost incurred by doing so.

Otherwise, the block can be either in the left subtree or in the right

subtree (the �rst case). In this case, we even let both the left and

right subtrees include the block Bb0 . This does’t increase the cost

too much since Bb0 ’s weight is small compared to the total weight

of elements in the tree (see Claim 3.5). Further, having redundant

elements is not an issue since we can remove some of them without

2
This is not exactly true since some blocks can have huge weights and we can only

say that any two consecutive blocks have aggregate weight at least `h , but this is for

an intuitive explanation.
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increasing the cost. Finally, the new costh values are stored in the

compact form of lasth .

In the next step, we further compress cost
′
h via ‘projection’ into

the higher level of block system,Bh+1. Recall thatBh is a re�nement

of Bh+1. In this step, we compress lasth by essentially keeping the

information w.r.t. starting blocks in the upper level Bh+1. Here we

go conservative again. We let lasth+1 (a,q) = b only when there is a

pair of blocks a′,b ′ in Bh such that lasth (a
′,q) = b ′ and the blocks

from Ba′ to Bb′ include all elements in the blocks from Ba to Bb .

Still, we have to be careful if the ending block B
last(a,q ) has a huge

weight, in which case the block has only one element. This is why

we distinguish the two cases in setting lasth+1 (x ,q).
Finally, we note that recovering an actual nearly optimal BST is

straightforward via a standard trace-back method, hence is omitted.

3.4 Analysis
De�nition 3.8. We say that cost

′
h is updated up to weight width

v if cost
′
h (Ba ,Bb ) ≤ (1+ ϵ0)

10hα logn ·OPT(sBa , tBb ) for all blocks

Ba ,Bb ∈ Bh such that w (Ba ,Bb ) ≤ v .

Recall that we only keep cost
′
h for all blocks Ba ,Bb ∈ Bh such

that w (Ba ,Bb ) ≥ `hn
α

and it is not stated in the de�nition for

simplicity. We will show the following main lemma.

Lemma 3.9. The recursion ensures that cost′h is updated up to
weight width `hn2α for all h ≤ h1.

Before proving the lemma, we observe that it immediately im-

plies the desired result. By de�nition of h1, when h = h1, we

have w (Ba ,Bb ) ≤ `hn
2α

is satis�ed for all Ba ,Bb ∈ Bh . For

the last block system Bh1 , consider the blocks Ba and Bb includ-

ing the �rst and last elements (1 and n), respectively. Then, we

have that cost
′
h (Ba ,Bb ) ≤ (1 + ϵ0)

10hα logn · OPT(sBa , tBb ) ≤
(1 + ϵ )OPT(1,n); recall that ϵ0 =

ϵ
100 logn . As mentioned before,

we can reconstruct a BST with cost at most (1 + ϵ )OPT(1,n), i.e. a

(1 + ϵ )-approximate optimal BST.

It now remains to show Lemma 3.9. To understand and analyze

the e�ect of the �rst step, we need the following lemma. For nota-

tional convenience, we may use sa and ta in place of sBa and tBa
for an indexed block Ba .

Lemma 3.10. Consider an `h -block system Bh for some h > 0.
For any Ba ,Bb ∈ Bh such thatw (Ba ,Bb ) ≥ `hn

2α , if there exists a
0 < γ < 1 such that

(1) cost
′(Ba ,Bb0 ) ≤ (1 + γ )OPT(sa , tb0 ) for any b0 such that

w (Ba ,Bb0 ) < 3w (Ba ,Bb )/4,
(2) cost

′(Bb0 ,Bb ) ≤ (1 + γ )OPT(sb0 , tb ) for any b0 such that
w (Bb0 ,Bb ) < 3w (Ba ,Bb )/4,

then cost(Ba ,Bb ) ≤ (1+γ ) (1+ ϵ0)OPT(sa , tb ) and cost′(Ba ,Bb ) ≤
(1 + γ ) (1 + ϵ0)

2OPT(sa , tb ).

Proof. Let k be the root of Tsa,tb , and Bu be the block in Bh
containing element/node k . If Bu is a single-element block, then

cost(Ba ,Bb ) ≤ cost
′(Ba ,Bu−1) + cost

′(Bu+1,Bb ) +w (Ba ,Bb )

≤ (1 + γ ) (OPT(sa ,k − 1) +OPT(k + 1, tb )) +w (sa , tb )

≤ (1 + γ )OPT(sa , tb ).

If Bu contains more than one element, then w (Bu ) ≤ `h (see

Fact 3.7). From the precondition of the lemma, we havew (Ba ,Bb ) =
w (sa , tb ) ≥ `h ·n

2α
. Thus, by Lemma 3.4, we have thatw (sa ,k−1) ≤

2w (sa , tb )/3 and w (k + 1, tb ) ≤ 2w (sa , tb )/3, which imply that

w (sa , su−1) ≥
w (sa , sb )

3

−`h ≥
(
1

3

−
1

n2α

)
w (Ba ,Bb ) ≥

1

4

w (Ba ,Bb )

and similarly w (tu + 1, tb ) ≥ w (Ba ,Bb )/4. Hence
w (k,tu )
w (sa,tu )

≤

`h
w (sa,tb )/4

≤ 4

n2α and
w (su ,k )
w (su ,tb )

≤
`h

w (sa,tb )/4
≤ 4

n2α . By Claim 3.5,

cost(Ba ,Bb )

≤ cost
′(Ba ,Bu ) + cost

′(Bu ,Bb ) +w (Ba ,Bb )

≤ (1 + γ ) (OPT(sa , tu ) +OPT(su , tb )) +w (sa , tb )

≤
1 + γ

1 − 48 logn/n2α
(OPT(sa ,k − 1) +OPT(k + 1, tb )) +w (sa , tb )

≤ (1 + γ ) (1 + ϵ0)OPT(sa , tb ).

From the de�nition of cost
′(Ba ,Bb ), we have

cost
′(Ba ,Bb ) ≤ (1 + ϵ0)cost(Ba ,Bb ) ≤ (1 + γ ) (1 + ϵ0)

2OPT(sa , tb ).

�

Recall that cost
′
h is currently updated up to weight width

`hn
2α

. Hence, if `hn
αw (Ba ,Bb ) ≤

4

3
`hn

2α
, the condition stated

in Lemma 3.10 is satis�ed, and cost
′
h is updated up to weight

width
4

3
`hn

2α
. Hence, after dlog

4/3 n
α e ≤ 3α logn iterations of

the recursion, Eq. (4), cost
′
h is updated up to weight width `hn

3α
.

By Lemma 3.10, we know that cost
′
h is (1 + ϵ0)

(10αh+6α ) logn
-

approximate up to weight width `hn
3α

.

Finally, we now consider the e�ect of the second step. In

this step, `hn
2α ≤ vq ≤ `hn

3α
, which implies that `hn

2α ≤

w (Ba ,Blasth (a,q ) ) ≤ `hn
3α

. In the �rst case we set lasth+1 (x ,q) = y
and there is no loss since the blocks in Bh+1 from Bx to By has ex-

actly the same set of elements as those in Bh from Ba to lasth (a,q).
In the second case that we set lasth+1 (x ,q) = y, we know that By
includes more than one element, hence we have w (By ) ≤ `h+1 by

Fact 3.7. Since w (By )/w (Ba ,Blasth (a,q ) ) ≤ `h+1/(`hn
2α ) ≤ 1/nα ,

we have

cost
′
h+1 (Bx ,By ) = cost

′
h (Ba ,Blasth (a,q ) )

≤ (1 + ϵ0)
(10αh+6α ) lognOPT(sBa , tBlasth (a,q ) )

≤ (1 + ϵ0)
(10αh+6α ) logn (1 + ϵ0)OPT(sBx , tBy )

≤ (1 + ϵ0)
10(h+1)α lognOPT(sBx , tBy ).

The penultimate inequality follows from Claim 3.5 with the fact

w (By )/w (Ba ,Blasth (a,q ) ) ≤ 1/nα . This completes the proof of

Lemma 3.9.

4 WEIGHTED INTERVAL SELECTION
In this section, we consider the Weighted Interval Selection problem

(IS) and give a (1 − ϵ )-approximation algorithm running in O (1)
rounds. For the problem de�nition, see Section 2.
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4.1 O (1)-round Algorithm
This section is devoted to proving the following theorem.

Theorem 4.1. For any ϵ,δ > 0, there exists a (1 − ϵ )-
approximation for the Weighted Interval Selection problem running in
O ( 1δ (log

1

ϵ + log
1

δ )) rounds when each machine has memory Õ (nδ ).

We perform a simple preprocessing before we introduce some

de�nitions. For simplicity, assume w.l.o.g. that intervals start and

end times are all distinct and not integers. We can have this prop-

erty by perturbing those times without changing the feasibility of

any subset of intervals. Here start (end, resp.) times are increased

(decreased, resp.) by a in�nitesimal amount. Order intervals in in-

creasing order of their start times. Equally distribute intervals to

machines – the �rst n/m intervals go to machine 1, the next n/m
machines go to machine 2, and so on. For notational simplicity,

we assume that intervals on machine k start at times between k
and k + 1. This is w.l.o.g. that since the feasibility of the solution

only depends on the relative ordering of intervals start and end

times, and we can easily transform the given instance to satisfy

this property in O (1) rounds. Note that machine k can only see

intervals starting at times between k and k + 1.

When we say an interval (a,b) starts on machine k , we mean that

the interval is on machine k or equivalently k < a < k+1. Similarly,

we say an interval (a,b) ends on machine k if k < b < k + 1. The

interval is said to be local if k < a,b < k + 1 for some integer k ,

otherwise crossing. We may call a subset of disjoint intervals, D,

as a block. We can de�ne D’s start (end, resp.) time as the start

(end, resp.) time of the earliest starting (ending, resp.) interval in

D. We say that a block D spans machines k,k + 1, · · · ,k ′ if the

earliest starting interval in D starts on machine k and the latest

ending interval in D ends on machine k ′. We say that two blocks

are (pair-wise) independent if they span disjoint sets of machines. If

a block contains at most ` crossing intervals, we say that the block

is a `-block. Let w (D) :=
∑
Ii ∈D wi .

Lemma 4.2. For any even integer L ≥ 2, there exists a (1 − 2/L)-
approximate solution consisting of (pair-wise) independent L-blocks.

Proof. Consider a �xed optimal solution, from which we re-

move some crossing intervals as follows, without losing more than

1/L times the optimum. Partition the crossing intervals into groups

so that each group contains L consecutive crossing intervals; the

last group may contain less than L crossing intervals. We remove

the lightest interval from every group except the last. Clearly we

lose at most 1/L times the optimum. It is easy to see that the result-

ing solution consists of 2L-blocks that are pairwise independent.

By scaling L, we obtain the lemma. �

Overview of the Algorithm. Let’s take a moment to understand

what Lemma 4.2 implies. If there is a nearly optimal solution consist-

ing only of 0-blocks, then we can let each machine compute the best

‘local’ solution from the local intervals on the machine, and simply

aggregate the weights of the local solutions from all machines. The

aggregation can be done inO (1/δ ) rounds; recall that each machine

has Õ (nδ ) memory. Thus, we will be able to compute a nearly op-

timal solution in O (1/δ ) rounds. However, the optimum solution

may have lots of heavy crossing intervals, which can’t be ignored

to obtain a nearly optimal solution. By Lemma 4.2, we know that

we can construct a (1 − ϵ )-approximate solution from 2/ϵ-blocks

that are pair-wise independent. We compute such blocks that start

no earlier than Ii for each interval Ii . Here by using the mono-

tonicity property and the swapping argument, we compute them

approximately and memory-e�ciently in O (1ϵ,δ ) rounds. Once we

have such blocks, we view each block as an ‘consolidated’ interval.

More precisely, we zoom out the picture by approximating each

interval’s start and end times by the machines (indices) where they

fall. This is justi�ed since the blocks we will choose are pairwise

independent. By taking this simpli�ed yet equivalent view, we get a

new instance whose size is almost linear in the number of machines.

Hence we can recurse on the new instance. We will only need to

recurse O (1/δ ) times since the number of intervals decreases by a

factor of Ω̃(nδ ). Thus, this whole procedure requires only O (1ϵ,δ )
rounds. To derive Theorem 4.1, we need to set parameters more

carefully, but this is a high-level overview.

We assume w.l.o.g. that the heaviest interval has weight 1 by

scaling and wi ≥ ϵ/n for all i since intervals with weight less than

ϵ/n contribute to the optimum by at most ϵ .

De�nition 4.3. For each interval Ii and a target weight µ,

let OPT(i, µ,L) be the smallest interval index j ≥ i such that

there is a L-block of weight at least µ that is a subset of

{Ii , Ii+1, Ii+2, · · · In } and is disjoint from {Ij , Ij+1, · · · , In }. LetW :=

{0, 1

n2
,
(1+η)
n2
,
(1+η)2

n2
, · · · ,n} for η to be determined. A family F =

{D (i, µ,L)}i ∈[n],µ ∈W of blocks is said to be a 1 − γ -approximate

compact family of L-blocks if D (i, µ,L) has weight at least (1 − γ )µ
and D (i, µ,L) ≤ OPT(i, µ,L). Here, D (i, µ,L) is analogously de�ned

as OPT(i, µ,L).

What the compact family means is the following. In Lemma 4.2,

we observed that there is a (1−2/L)-approximate solution consisting

only of L-blocks, i.e. with at most L crossing intervals. For each

of those blocks, D∗, the compact family contains almost as a good

block D whose weight is within factor (1 − γ ) of D∗’s weight and

that ends no later than D∗. Therefore, if we replace each block in

the nearly optimal solution with the corresponding block in the

family, we can still get a feasible solution only losing (1 − 2/L)
factor in the approximation ratio. By Lemma 4.2, this implies that

we can construct a (1 − 2/L) (1 − γ )-approximate solution from the

compact family of L-blocks.

The following lemma states the concrete goal we aim to achieve

in each iteration of the recursion.

Lemma 4.4. If we can construct a (1−O (ϵδ ))-approximate compact
family of L-blocks inO (log 1

ϵ + log
1

δ ) rounds where L =
2

ϵδ and η =
ϵδ

10(log(1/ϵ )+log(1/δ )) , then we can obtain a (1 −O (ϵ ))-approximate

solution for the IS problem in O ( 1δ · (log
1

ϵ + log
1

δ )) rounds.

Proof. Note that the family has size n |W | = n · O (log
1+η n).

Knowing that we can �nd a (1 − 2/L)-approximate solution con-

sisting of independent optimal L-blocks, we can construct a (1 −
O (ϵδ )) · (1− 2/L) = 1−O (ϵδ ) approximate solution from the given

family. As discussed before, we only need to use pair-wise inde-

pendent blocks in the family meaning that we only need blocks

corresponding to D (1, ·,L), D (1 + n/m, ·,L), D (1 + 2n/m, ·,L), · · · .
We can view each of these blocks as a new interval where each

interval’s start and end times are replaced with the appropriate
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machine indices. So the new instance has size n1−δ ·O (log
1+η n);

later we will use O (log2
1+η n) factor more memory in the actual DP

which doesn’t a�ect this lemma. We need only O (1/δ ) iterations

of the recursion to reduce the instance size to �t it into a single

machine’s memory, Θ̃(nδ ). The claimed approximation ratio and

number of rounds follow immediately. �

It now remains to show Lemma 4.4.

Constructing the Desired Compact Family using DP. We will

�nd a desired compact family, F (`) := {D (i, µ, 2` − 1)}i ∈[n],µ ∈W ,

as stated in Lemma 4.4. Towards this end, we �nd such a family

for ` = 0, 1, 2, · · · , `1 = dlog 2/(ϵδ )e in this order until we have

2
` − 1 ≥ L = 2/(ϵδ ). Since we will use an induction on the value

of `, we re�ne and strengthen the property that F (`) satis�es: our

goal is to �nd F (`) that is (1−η)`-approximate in increasing order

of ` = 0, 1, 2, · · · `1 in O (`) rounds. Since L = 2

ϵδ , we only need

O (log 1/ϵ + log 1/δ ) rounds, and we have (1 − η)`1 = 1 − O (ϵδ )

since η = ϵδ
10(log(1/ϵ )+log(1/δ )) .

Our remaining goal is to �nd F (`) that is (1 − η)`-approximate

in increasing order of ` = 0, 1, 2, 3, · · · `1 in O (`) rounds. In our DP,

each machine k needs to know in O (1) rounds the earliest ending

crossing interval of weight at least µ ∈W that starts on machine

k + 1 or later; the exact de�nition is deferred to Corollary 4.6. The

following claim will be useful towards this end.

Claim 4.5. Suppose n numbers, u1,u2, · · · ,un , are stored across
m machines; the �rst machine has u1, · · · ,un/m , the second has
un/m+1, · · · ,u2n/m , and so on. Let S (k ) be the smallest among the
numbers assigned to machines k,k + 1, · · · ,m. Then, every machine
k can compute S (k ) simultaneously in O (1/δ ) rounds.

Proof. Let S (k,∆) be the smallest among the numbers assigned

to machines k,k+1, · · · ,k+∆−1. It is obvious that we can compute

S (k, 1) in round 1 and store it on machine k . In round 2, machine k
computes S (k,nδ ) by getting S (k, 1), S (k+1, 1), · · · , S (k+nδ −1, 1)

from machines k through k +nδ − 1 and taking the minimum. Sim-

ilarly, in the next round, machine k computes S (k,n2δ ) by getting

S (k,nδ ), S (k + nδ ,nδ ), · · · , S (k + nδ (nδ − 1),nδ ) and taking the

minimum. The claim follows by repeating this process. �

Corollary 4.6. For any interval Ii , let C (i, µ ) denote the index of
the earliest starting crossing interval of weight at least µ that starts
after Ii ends. We can computeC (i, µ ) for every i and µ ∈W inO (1/δ )
rounds and store it on the machine bbi c where the interval Ii ends.
Further, each machine uses Õ (n/m) memory.

Proof. Fix µ. The interval IC (i,µ ) can start on machine bbi c or

later. If it starts on machine bbi c, the machine has direct access to

the interval. Otherwise, the machine computes IC (i,µ ) by setting

S (k ) in Claim 4.5 to the earliest ending crossing interval that starts

on machine k or later, which can be done in O (1/δ ) rounds by

Claim 4.5. We copy S (bbi c + 1) to machine bbi c. It is easy to see

that each machine only uses O ( |W |) extra memory. �

Clearly we can compute F (0) in 1 round with no communica-

tion across machines since the blocks in F (0) include no cross-

ing intervals. We now show that we can �nd F (` + 1) from

F (`) in O (1) rounds. Fix i , µ, and `. We show how to compute

D (i, µ, 2`+1 − 1). Consider any triplet µ1, µ2, µ3 ∈ W such that

(1 − η)µ ≤ µ1 + µ2 + µ3 ≤ µ which we call a candidate triplet. Let

j1 = D (i, µ1, 2
`−1). The machine bai c having Ii asks machine baj1c

(where Ij1 starts) for the earliest ending crossing interval of weight

at least µ2 starting no earlier than Ij1 , which can be done in O (1)
round by Corollary 4.6. Let C denote the crossing interval. Then,

the machine also gets the information j3 = D (j2, µ3, 2
` − 1) where

Ij2 is the earliest starting interval after the intervalC ends, from the

machine where C ends. We take the minimum j3 over all possible

triplets. The value j3 can be obtained for di�erent triplets in parallel.

Hence this requires only O (1) rounds. Further, there are at most

|W |3 = O (log3
1+η n) triplets to be considered for each i . Thus, each

machine uses memory at most (n/m)O (log3
1+η n) = Õ (n/m).

To show this process correctly computes D (i, µ, 2`+1 − 1) that

is (1 − η)`+1-approximate, assume the block corresponding to

OPT(i, µ, 2`+1−1) includes at least 2
`

crossing intervals since other-

wise we have OPT(i, µ, 2` − 1) = OPT(i, µ, 2`+1 − 1), thus by induc-

tion hypothesis, we can use the block corresponding toD (i, µ, 2`−1)

as the desired block corresponding to D (i, µ, 2`+1−1). Say the block

corresponding to OPT(i, µ, 2`+1 − 1) consists of 2
` − 1-block B∗

1

starting with interval Ii∗
1

, a ‘middle’ crossing interval C∗, and a

2
` − 1-block B∗

3
starting with Ii∗

3

; the block B∗
3

could be empty. Let

µ∗
1

and µ∗
3

be the weights of the two blocks, B∗
1

and B∗
3
, respectively.

Also let µ∗
2

be the interval C∗’s weight. Note that µ ≤ µ∗
1
+ µ∗

2
+ µ∗

3
.

Let µ ′
1
, µ ′

2
, µ ′

3
denote the largest values in W that are no greater

than µ∗
1
, µ∗

2
, µ∗

3
, respectively. Note that (1 − η)µ ≤ µ ′

1
+ µ ′

2
+ µ ′

3
≤ µ.

We now show that we can �nd as good blocks B1 and B3 as

B∗
1

and B∗
3
, and as good crossing interval C as C∗. Suppose the

algorithm now considers the triplet (µ ′
1
, µ ′

2
, µ ′

3
).

(1) Since i ≤ i∗
1

from the de�nition of OPT(i, µ, 2`+1 − 1), it

must be the case that j1 = D (i, µ ′
1
, 2`−1) ≤ D (i∗

1
, µ ′

1
, 2`−1).

Let B1 be the block corresponding to D (i, µ ′
1
, 2` − 1). By

induction hypothesis, we have w (B1) ≥ (1 − η)`µ ′
1
.

(2) The algorithm looks for a crossing interval of weight at

least µ ′
2

that starts no earlier than Ij1 and ends the earliest.

Clearly, C∗ is a candidate. Hence w (C ) ≥ µ ′
2
.

(3) The interval C ends no later than C∗. Let B3 be the block

corresponding to D (j2, µ
′
3
, 2` − 1). Since B∗

3
is considered

as a candidate for B3, we have w (B3) ≥ (1 − η)`µ ′
3

by

induction hypothesis; and B3 ends no later than B∗
3
.

Hence, the 2
`+1 − 1-block consisting of B1, B3 bridged by C is

considered for a valid triplet (µ ′
1
, µ ′

2
, µ ′

3
), and the block has weight

at least (1 − η)`µ ′
1
+ µ ′

2
+ (1 − η)`µ ′

3
≥ (1 − η)`+1µ. Further, the

block ends before that corresponding to OPT(i, µ, 2`+1 − 1). This

completes the proof of Theorem 4.1.

5 LONGEST INCREASING SUBSEQUENCE
This section focuses on the longest increasing subsequence (LIS)

problem. A subsequence of a string I is a string obtained by deleting

entries of I . A subsequence is increasing if each position is strictly

greater than the one before. We assume the input is a string of

length n consisting of integers between 1 and n. Duplicates are

allowed in the input. The section gives a O (logn) round algorithm.

This algorithm is presented because it gives a streamlined view of
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how the principals of monotonicity and decomposability can be

used to design dynamic programs in the distributed setting. Indeed,

this algorithm follows similar a development as was used for the

logarithmic round interval selection problem. Due to the space

constraints, we only give an overview of our O (1) round algorithm,

deferring details to the full version of this paper.

5.1 A Second Example of the Properties: LIS in
O (logn) rounds

Consider an instance of the longest increasing subsequence (LIS)

problem where I is an input string of length n. De�ne the position
x of a string I to be the xth entry in I and the value to be the number

stored in this position. Our goal is to design a e�cient distributed

1−ϵ approximation algorithm for the problem when the number of

machines is Θ(m) and each of the machines has memory Θ̃(n/m)
for any constant 0 < ϵ < 1. The memory is assumed to be at least

nδ for some constant δ > 0.

Standard Sequential DP. We begin by considering a simple DP

for the LIS problem in the sequential setting. Let B (v, i ) denote

the length of the LIS of I that only uses elements in positions

i, i + 1, . . . ,n in I and includes no element of value less than v . The

longest increasing subsequence can be computed as follows where

I [i] denotes the value stored in the ith position of I .

B (v, i ) =



max{B (v, i + 1), 1 + B (I [i] + 1, i + 1)} if I [i] ≥ v

B (v, i + 1) otherwise

The �nal value is stored in B (−∞, 1). It is assumed that all entries

are initially 0 and then they are �lled in recursively.

AnO (logn)-Round Distributed AlgorithmUsingMonotonic-
ity and Decomposability. Like in the interval selection problem,

the above recurrence is too sequential to be directly of use in the dis-

tributed setting. Further, the above recurrence requires too many

entries to be stored. Indeed, there are Θ(n2) possible entires re-

quired to compute L, yet we aim to use Õ (n) aggregate memory.

Both of the challenges will need to be overcome to have an e�cient

distributed algorithm.

The �rst insight used will be decomposability. Consider a sub-

string I∗ of I . Let I ′ and I ′′ be two substrings of I∗ such that their

concatenation I ′ ∪ I ′′ equals I∗. We say a string I ′ is a substring of

a string I∗ if I ′ is obtained from I∗ by cutting out some pre�x and

su�x of I∗. Consider extending the de�nition of B to the following.

Let DI ∗ (v,v
′, i ) be the length of the LIS of a string I∗ that only uses

positions i, i + 1, . . . , |I∗ | of I∗ such that the elements used have

value at least v and at most v ′. Then, DI ∗ can be decomposed and

computed using DI ′ and DI ′′ . Indeed, if |I∗ | − i + 1 ≤ |I ′′ | then

DI ∗ (v,v
′, i ) = DI ′′ (v,v

′, i − |I ′ |). Otherwise,

DI ∗ (v,v
′, i ) = max{DI ′ (v,v

′, i ),DI ′′ (v,v
′, 1),

max

v ′′
{DI ′ (v,v

′′, i ) + DI ′′ (v
′′ + 1,v ′, 1)}}.

The �rst term in the maximum states the subsequence correspond-

ing to DI ∗ (v,v
′, i ) is completely contained in I ′ and the second

term captures the case where the subsequence is in I ′′. The third

captures the case where the subsequence spans both I ′ and I ′′.

This decomposition will be critical for our algorithm design. Note

though that so far we have only increased the memory usage.

The next insight required is used to reduce the memory re-

quired to compute D. Like in the interval scheduling case, the

key is monotonicity. Notice that by de�nition B (v ′, i ′) ≥ B (v, i )
for any i ′ ≤ i and v ′ ≤ v and similarly for D. With mono-

tonicity, the recurrence D can be replaced by a similar recurrence

just as in the interval selection problem. De�ne a similar entry

PI ∗ (v, `, i ) by swapping v ′ with ` where ` represents the target

length: PI ∗ (v, `, i ) = minv ′:DI ∗ (v,v ′,i )≥` v
′
. For an optimal algo-

rithm, this does not change the amount of space required. However,

later it will be established that storing only a small poly-logarithmic

number of entries for ` will be su�cient.

The last insight is to drop i from P to get the following recurrence

L. By the way we will later combine entries for L, we will show

that i is not needed due to the decomposability of the problem.

This gives a recurrence of the desired size Õ (n) assuming only a

logarithm number of entries for ` is required. For any string I∗, let

LI ∗ (v, `) = PI ∗ (v, `, 1) be the smallest value v ′ such that there is

an increasing subsequence of I∗ of length at least ` such that only

values between v and v ′ are used. It is assumed that if there is no

increasing subsequence for I∗ of length at least ` using values at

least v then LI ∗ (v, `) = ∞.

We now show how to de�ne L recursively in a similar manner

as was established for D. As before, let I ′, I ′′ be two substrings of I
such that the concatenation of I ′ and I ′′ forms a substring of the

input I . Let I∗ be this substring. Given LI ′ and LI ′′ , we can compute

LI ∗ as follows. By the notation v ∈ I∗, we mean that the value v
appears in the string I∗.

LI ∗ (v, `) = min




min

v ′≥v :v ′∈I ′
LI ′ (v

′, `), (5)

min

v ′≥v :v ′∈I ′′
LI ′′ (v

′, `),

min

`′, `′′,v ′,v ′′:v ′∈I ′,v ′′∈I ′′,v ′′>v ′≥v,
LI ′ (v ′, `′)<v ′′, `′+`′′≥`

LI ′′ (v
′′, `′′)




The �rst term in the minimum says that the LIS is completely

stored in I ′ and the second term considers when the LIS is com-

pletely in I ′′. The third term combines subsequences bridging be-

tween I ′ and I ′′.
Before giving the details of the algorithm, �rst it is established

that storing only a small number of entries for ` will be su�cient

to approximate L. To do so, �rst consider the following fact.

Fact 5.1. The length of the longest increasing sequence of I is the
largest ` such that there is an interger v satisfying LI (v, `) < ∞.

Let 0 < ϵ < 1 be a constant. Let LI be an estimation of LI . The

purpose of LI is to behave similarly to L but is only an approxima-

tion due to only considering values of ` of the form (1 + ϵ
10 logn )

k

for integer k ≥ 0. We will say that ` takes geometric values. We say

LI (1 − γ )-approximates LI if for every v, ` such that L(v, `) < ∞,

there is a `′ ≥ (1 − γ )` such that LI (v, `
′) ≤ LI (v, `) and ` is

geometric. We assume that L is computed in the same way as L in

the recurrence given in Eq. 5, but restricting ` to be geometric.
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The following lemma bounds the amount the approximation

degrades when computing LI from LI ′′ and LI ′′ .

Lemma 5.2. Let I ′, I ′′ be two substrings of I such that I ′∪I ′′ forms
a substring of I . Denote I∗ = I ′ ∪ I ′′. If LI ′ (1 −γ )-approximates LI ′
and LI ′′ (1 − γ )-approximates LI ′′ , then LI ∗ (1 − ϵ

10 logn ) (1 − γ )-
approximates LI ∗ .

Proof. Fix any v, ` such that LI ∗ (v, `) < ∞. Let v ′ = LI ∗ (v, `).
Let A be the increasing sequence corresponding to the entry in

LI ∗ (v, `). The analysis is broken into several cases. If A ⊆ I ′, then

LI ′ (v, `) = v
′
. SinceLI ′ (1−γ )-approximates LI ′ , there is a geomet-

ric `′ ≥ (1 − γ )` such that LI ′ (v, `
′) ≤ v ′. Hence LI ∗ (v, `

′) ≤ v ′.
A similar argument holds if A ⊆ I ′′.

The interesting case is when A is not a subset of I ′ nor I ′. In

this case, let A′ = A ∩ I ′ and A′′ = A ∩ I ′′. Let t be the value of

the last element of A′ and s be the value of the �rst element of

A′′. Let `1 = |A
′ | and `2 = |A

′′ |. Notice that LI ′ (v, `1) ≤ t and

LI ′′ (s, `2) ≤ v
′
. Since LI ′ (1−γ )-approximates LI ′ and LI ′′ (1−γ )-

approximates LI ′′ , there are `�
1
≥ (1 − γ )`1 and `�

2
≥ (1 − γ )`2

such that LI ′ (v, `
�
1
) ≤ t and LI ′ (s, `

�
2
) ≤ v ′. Consider rounding

`�
1
+ `�

2
down to the closest geometric value `∗. This rounding

ensures that `∗ ≥ (`�
1
+`�

2
) 1

(1+ ϵ
10 logn )

≥ (1−γ ) 1

(1+ ϵ
10 logn )

(`1+`2) ≥

(1 − γ ) (1 − ϵ
10 logn ) (`1 + `2). Further, LI ∗ (v, `

∗) ≤ LI ′′ (s, `
�
2
) ≤ v ′

completing the proof. �

The previous lemma will allow us to focus on geometric values

of ` to ensure memory e�ciency.

Sequential Algorithm. With the above ideas in place, we are

ready to describe the algorithm. We �rst describe the algorithm

without details on how to make it distributed. That is, as if it were

sequential. Later it is discussed how the algorithm �ts in the dis-

tributed setting.

The algorithm works as follows.

(1) Initially let I1 = {Ii : 1 ≤ i ≤ n} where Ii is the substring

of I only containing i-th element of I . For any 1 ≤ i ≤ n,

set LIi (v, 1) = v for v ∈ Ii , and∞ for all the other entries.

(2) Set k = 1.

(3) Repeat the following process dlogne times until there is

only one interval in Ik
(a) Increment k . For every i > 0, let Ii be the concatena-

tion of (2i − 1)-th and (2i )-th interval in Ik−1. Put all

the new intervals into Ik .

(b) For every I∗ ∈ Ik , denote I ′ and I ′′ be the two inter-

vals in Ik−1 such that I∗ = I ′ ∪ I ′′. For any v ∈ I ,
let LI ∗ (v, `) be the value of the same entry for the

interval in Ik−1.

(i) For any v ∈ I ′ and any geometric `′,

let τ (v, `′) be the smallest value v ′′ in

I ′′ such that v ′′ > LI ′ (v, `
′). Update

LI ∗ (v, `) for every geometric ` to be

min{LI ∗ (v, `), min

`′, `′′:
`′+`′′≥`

LI ′′ (τ (v, `
′), `′′)}.

(ii) For every v ∈ I and geometric `, update

LI ∗ (v, `) to be minv ′≥v LI ∗ (v
′, `).

The following lemma establishes that the algorithm computes

the desired solution.

Lemma 5.3. Fix any k and a string I ∈ Ik . Let I = I ′ ∪ I ′′ where
I ′, I ′′ ∈ Ik−1. Given LI ′ and LI ′′ , the values the algorithm computes
for LI ∗ is the same as the recurrence in Eq. 5 for geometric values of
target lengths.

Proof. For any v and geometric `. Consider the recurrence in

Eq. 5 for LI ∗ (v, `). Value is computed from the minimum of three

terms. In order, we call these the �rst, second and third cases. If

value stored in LI ∗ (v, `) is computed from the �rst or the second

case in Eq. 5, then clearly LI ∗ (v, `) is correctly computed by the

algorithm in Step 3(b)ii.

Consider the case where LI ∗ (v, `) is computed from the third

case. In this case, LI ∗ (v, `) is obtained from combining both

LI ′ (v
′, `′) and LI ′′ (v

′′, `′′). Without loss of generality assume

v ′′ is the smallest value in I ′′ that is greater than LI ′ (v
′, `′). After

Step 3(b)i, LI ∗ (v
′, `) ≤ LI ′′ (v

′′, `′′), and after 3(b)ii, LI ∗ (v, `) ≤
LI ′′ (v

′′, `′′). Thus, the algorithm computes the desired solution.

�

Knowing that the algorithm runs in dlogne iterations, we have

the following lemma bounding the approximation guarantee of the

algorithm to be 1 − ϵ using Lemma 5.2.

Corollary 5.4. Let v be the smallest value in input string I . Let `
be the largest value such that LI (v, `) < ∞, then the length of the

LIS of I is at least `/
(
1 − ϵ

10 logn

) dlogn e
≥ `/(1 − ϵ ).

Making the Algorithm Distributed. Now we discuss how to

parallelize the algorithm. Assume that machine i stores the positions

i · b nm c + 1 to (i + 1) · b nm c for i = 0, 1, . . . ,m. This remains on the

machine throughout the computation of the algorithm.

Step 1, 2, 3(a) are all easily adapted to the distributed setting.

Consider step 3(b)i. Fix the strings I∗, I ′, and I ′′ as in this step of

the algorithm. Let M ′′ be the set of machines that I ′′ is stored on.

These machines sort the elements in I ′′ by their values. This can

be done in O (1) rounds. Then, the machines M ′′ perform a binary

search for each v ∈ I ′ and geometric ` to �nd τ (v, `). This takes

O ( 1δ ) rounds if the machines have memory nδ by performing a

B-tree search. This is su�cient to compute the minimum in this

step.

For 3(b)ii, we �rst sort all the elements in I∗ by the values. We

view all the elements of I∗ as the leaves of a binary tree. We compute

the smallest value of LI ∗ (v, `) for every internal node of the tree

for every geometric ` in a bottom up way. Then we can �nd the

smallest LI ∗ (v
′, `) for every v ′ ≥ v for every v, ` by binary search.

This also takes O (logn) rounds.

Overall algorithm takesO (logn) rounds. There areO (logn) steps

in the sequential algorithm given. Each step can be implemented

in O (1) rounds.

5.2 LIS in Constant Rounds
Consider an instance of the longest increasing subsequence (LIS)

problem where I is an input string of length n. We assume that I
is a string of integers. Let S be the sorted version of the string

3
.

3
Note that sorting can be done in the massively parallel (distributed) setting in O (1)

rounds so long as the machines have memory at least nδ for constant δ > 0. This

follows by adapting sample sort [21].
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Throughout the section, I is referred to as the input string and

S the sorted string. Our goal is to design a e�cient distributed

(1 − ϵ )-approximate algorithm for the problem. Let the number of

machines available be Θ(m) and assume that each of the machines

has memory Θ̃(n/m). This section describes an algorithm for LIS

when the memory on each machine is at least Ω̃(n3/4).
As in the previous section, the position x of a string I ′ to be

the xth entry in I ′ and the value to be the number stored in this

position. Whenever a position of I is stored on a machine it is

assumed that both the position and value are stored on the machine.

Let Ii (respectfully, Si ) be the substring of I (resp. S) consisting of

the positions i ·
⌊
n
m

⌋
+ 1 to (i + 1) ·

⌊
n
m

⌋
for i = 0, 1, . . . ,m.

The following de�nition will be crucial for the design of the

algorithm.

De�nition 5.5. An interval Si is called a crossing interval with

respect to an increasing subsequence A if A ∩ Si includes element

from more than one interval Ij .

The design of the algorithm is based on the following property.

This property captures the decomposability of the optimal solu-

tion.

Lemma 5.6. For any 0 < ϵ < 1 there exists an 1 − ϵ approximate
solution A such that the sorted intervals can be partitioned into sets
P1, P2, . . . Pk where each Pj has the following properties.

• Pj includes a continuos set of intervals. That is, there is values
a and b such that Pj = {Sa , Sa+1, Sa+2, . . . , Sb }.

• Pj contains at most 10

ϵ 2 crossing intervals
• Consider any input interval Ij . If it is the case that A ∩ Ij

includes elements in two di�erent sorted intervals Sa and Sb
then both Sa and Sb must be in the same partition.

Overview of the Algorithm: The previous lemma captures the

decomposability of the optimal solution that will enable our al-

gorithm to run in O (1) rounds. Intuitively, the lemma states that

there is a near optimal solution that allows the sorted intervals

Si to be partitioned in a way that there is no interaction between

the partitions. Call any 1 − ϵ approximate increasing subsequence

with the properties given in the lemma (1 − ϵ )-breakable. Each

partition is contiguous, has few crossing intervals and, further, the

intersection of the optimal solution and a �xed input interval can

be associated with a single partition. The last property ensures that

there is no interaction between the increasing subsequences in the

di�erent partitions.

Fix a (1 − ϵ )-breakable solution. Assume the algorithm knows

the partitioning given in the lemma and the input intervals asso-

ciated with each partition. In this case, the algorithm focuses on

constructing the LIS for each partition separately. Since there is

no overlap between the partitions for sorted intervals or input in-

tervals, a concatenation of the LIS for each subproblem gives the

overall optimal solution.

When focusing on an algorithm for each partition, the second

property given in the lemma states that the solution is not too

complicated. In particular, the lemma states that there is little in-

teraction between the sorted intervals. Indeed, handling crossing

intervals is challenging, but we are guaranteed that there is a small

number of them. This can be leveraged in the algorithm as follows.

The algorithm computes a solution with β crossing intervals assum-

ing that each machine knows the best solution for the subproblem

of only having β − 1 crossing intervals. The idea is that commu-

nication between machines is required to coordinate the solution

when there are crossing intervals. However, by enforcing there to

be few crossing intervals, we can handle one additional crossing

interval per round.

If the algorithm knew the partitioning, then this idea can be

used to construct the solution. Unfortunately, it is non-obvious

how to determine the partitioning. To do this, the algorithm com-

putes the LIS for all pairs i, j, de�ning sequences of sorted inter-

vals Si , Si+1, . . . Sj and all pairs a,b de�ning a sequence of input

intervals Ia , Ia+1, . . . , Ib . This LIS only allows elements in the inter-

section of these two groups and additionally only allows for some

small number β of crossing intervals. The solution for β + 1 can

be computed using the information for β over all i, j,a,b. The solu-

tions are computed for all i, j,a,b and allows for up to
10

ϵ 2 crossing

intervals. The lengths of all such solutions are communicated to a

single machine. This machine uses dynamic programming to deter-

mine the partition, which can be found since the machine knows

the LIS for each possible partition with a small number of crossing

intervals. Key is that all entries can �t onto a single machine, which

will be the case assuming the memory is at least Ω̃(n3/4) on each

machine and by using monotonicity to remove the need to store

information for one of the indices (in particular b is not required).

Using the above high-level ideas, we obtain the following result.

The proof is deferred to the full version of this paper.

Theorem 5.7. There is a 1−ϵ approximation algorithm for longest
increasing subsequence on an input of length n that usesm machines,
Õ ( 1

ϵ 4n/m) memory and O (1) rounds when the machinesm ≤ n1/4

and �xed constant ϵ > 0.
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