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Abstract
Active search is an active learning setting with the
goal of identifying as many members of a given
class as possible under a labeling budget. In this
work, we first establish a theoretical hardness of
active search, proving that no polynomial-time
policy can achieve a constant factor approxima-
tion ratio with respect to the expected utility of the
optimal policy. We also propose a novel, compu-
tationally efficient active search policy achieving
exceptional performance on several real-world
tasks. Our policy is nonmyopic, always consider-
ing the entire remaining search budget. It also au-
tomatically and dynamically balances exploration
and exploitation consistent with the remaining
budget, without relying on a parameter to control
this tradeoff. We conduct experiments on diverse
datasets from several domains: drug discovery,
materials science, and a citation network. Our
efficient nonmyopic policy recovers significantly
more valuable points with the same budget than
several alternatives from the literature, including
myopic approximations to the optimal policy.

1. Introduction
In many real-world applications, the process of analyzing
data incurs some cost; for example, obtaining a label may
require a laborious experiment, a human action, or deple-
tion of some other expensive resource. In these scenarios,
carefully selecting data to label can often help us achieve
our goals more efficiently than, e.g., random sampling. This
is the motivation behind active learning.

Naturally, which data examples are the most useful to la-
bel might change according to our objective. Traditionally,
much of the active learning literature has focused on train-
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ing a model to have high generalization performance with
few training examples. Here, we consider a special and
atypical realization of active learning: the active search
problem (Garnett et al., 2012). In active search, we seek
to sequentially inspect data so as to discover members of a
rare, desired class. The labels are not known a priori but can
be revealed by querying a costly labeling oracle. The goal
is to design an policy to sequentially query points to find
as many valuable points as possible under a labeling bud-
get. Several real-world problems can be naturally posed in
terms of active search; drug discovery, fraud detection, and
product recommendation are a few examples. A successful
active search policy faces the fundamental dilemma between
exploration and exploitation; i.e., whether to search for new
regions of valuable points (exploration) or take advantage
of the currently most-promising regions (exploitation).

Previous work developed policies for active search by ap-
pealing to Bayesian decision theory (Garnett et al., 2011;
2012). Garnett et al. (2012) derived the optimal policy in
this framework with a natural utility function. Not sur-
prisingly, realizing this policy in the general case requires
exponential computation. To overcome this intractability,
the authors of that work proposed using myopic lookahead
policies in practice, which compute the optimal policy only
up to a limited number of steps into the future. This defines
a family of policies ranging in complexity from completely
greedy one-step lookahead to the optimal policy, which
looks ahead to the depletion of the entire budget. The au-
thors demonstrated improved performance on active search
over the greedy policy even when looking just two steps into
the future, including in a drug-discovery setting (Garnett
et al., 2015). The main limitation of these strategies is that
they completely ignore what can happen beyond the chosen
horizon, which for typical problems is necessarily limited
to ` ≤ 3, even with aggressive pruning.

The contributions of this paper are two-fold. First, we prove
that no polynomial time policy for active search can have
nontrivial approximation ratio with respect to the optimal
policy in terms of expected utility. This extends the result
by Garnett et al. (2012) that myopic approximations to the
optimal policy cannot approximate the optimal policy. The
proof of this theorem is constructive, creating a family of
explicitly difficult active search instances and showing that
no polynomial time algorithm can perform well compared
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to the optimal (exponential cost) policy on these.

Second, we introduce a novel nonmyopic policy for active
search that considers not only the potential immediate contri-
bution of each unlabeled point but also its potential impact
on the remaining points that could be chosen afterwards.
Our policy automatically balances exploitation against ex-
ploration consistent with the labeling budget without re-
quiring any parameters controlling this tradeoff. We also
develop an effective strategy for pruning unlabeled points
by bounding their potential impact on the search problem.
We compare our method with several baselines by conduct-
ing experiments on numerous real datasets spanning several
domains including citation networks, materials science, and
drug discovery. Our results thoroughly demonstrate that
our policy typically significantly outperforms previously
proposed active search approaches.

2. Active Search and the Optimal Policy
Suppose we are given a finite domain of elementsX , {xi}.
We know that there is a rare subset R ⊂ X , the members
of which are considered valuable, but their identities are
unknown a priori. We will call the elements of R targets
or positive items. Assume that there is an oracle that can
determine whether a specified element x ∈ X is a target,
producing the binary output y , 1{x ∈ R}. The ora-
cle, however, is assumed to be expensive and may only be
queried t times. We seek to design a policy to sequentially
query elements to maximize the number of targets found.

We will express our preference over different sets of obser-
vations D ,

{
(xi, yi)

}
through a simple utility:

u(D) ,
∑

yi∈D yi, (1)

which simply counts the number of targets in D. Then,
the problem is to sequentially construct a set of t observed
points D with the goal of maximizing u(D). Throughout
this work, we use a subscript to specify a set of observed
data after i ≤ t queries, defining Di ,

{
(xj , yj)

}i
j=1

.

2.1. The Bayesian Optimal Policy

Following previous work, we consider the active search
problem in the standard Bayesian framework. Assume we
have a probabilistic classification model that provides the
posterior probability of a point x belonging to R, given
observed data D: Pr(y = 1 | x,D).

Recall that we are allowed to perform t labeling queries,
and suppose we are at some iteration i for i ≤ t; having
already observed i− 1 examples, Di−1. We wish to submit
the ith item to the oracle. Bayesian decision theory compels
us to select the item that if we evaluate next maximizes the

expected utility of the final observed dataset:

x∗i = argmax
xi∈X\Di−1

E
[
u(Dt) | xi,Di−1

]
. (2)

In other words, we choose a point x∗i maximizing the ex-
pected number of targets found at termination. Unfortu-
nately, as we shall see later, computing E

[
u(Dt) | xi,Di−1

]
is computationally impractical.

To better understand the optimal policy, consider the case
i = t, so we already have t− 1 observations Dt−1 and there
is only one more query left. The expected utility is

E
[
u(Dt) | xt,Dt−1

]
=
∑

yt
u(Dt) Pr(yt | xt,Dt−1)

= u(Dt−1) + Pr(yt = 1 | xt,Dt−1). (3)

Note u(Dt−1) is a constant, since Dt−1 was already ob-
served. Thus, when there is one query remaining, the opti-
mal decision is to greedily choose the remaining point with
maximum probability of being a target.

When two or more queries are left, the optimal policy is not
as trivial. The challenge is that after the first choice, the
probability model changes, affecting all future decisions.
Below, we show the expected utility for i = t− 1.

E
[
u(Dt) | xt−1,Dt−2

]
= u(Dt−2) +

Pr(yt−1 = 1 | xt−1,Dt−2) +

Eyt−1

[
max
xt

Pr(yt = 1 | xt,Dt−1)
]
. (4)

This expression has an intuitive interpretation. First, we
have the reward for the data already observed, u(Dt−2). The
second term is the expected reward contribution from the
point xt−1 under consideration, Pr(yt−1 = 1 | xt−1,Dt−2).
Finally, the last term is the expected future reward, which is
the expected reward to be gathered on the next step; from
our previous analysis, we know that this will be maximized
by a greedy selection (3). These latter two terms can be
interpreted as encouraging exploitation and exploration, re-
spectively, with the optimal second-to-last query.

In general, we can compute expected utility (2) at time i ≤ t
recursively as (Garnett et al., 2012):

E
[
u(Dt) | xi,Di−1

]
= u(Di−1) +

Pr(yi = 1 | xi,Di−1)︸ ︷︷ ︸
exploitation, < 1

+

Eyi

[
maxx′ E

[
u(Dt \ Di) | x′,Di

]]
︸ ︷︷ ︸

exploration, <t−i

. (5)

It is easy to show that the time complexity for computing
Eq. (5) is O

(
(2n)`

)
, where ` = t− i+ 1 is the lookahead

and n is the total number of unlabeled points.
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This exponential running time complexity makes the
Bayeisan optimal policy infeasible to compute, even for
small-scale applications. A typical workaround is to pretend
there are only a few steps left in the search problem at each
iteration, and sequentially apply a myopic policy (e.g., (3)
or (4)). We will refer to these policies as the one-step and
two-step myopic policies, respectively, and more generally
to the `-step myopic policy, with ` < t− i+ 1.

Since these myopic approaches cannot plan more than `
steps ahead, they can underestimate the potential benefit
of exploration. In particular, the potential magnitude of
the exploration term in (5) depends linearly on the budget,
whereas in an `-step myopic policy, the magnitude of the
equivalent term can go no higher than a fixed upper bound
of `. In fact, Garnett et al. (2012) showed via an explicit
construction that the expected performance of the `-step
policy can be arbitrarily worse than any m-step policy with
` < m, exploiting this inability to “see past” the horizon.
When following this suggestion, we must thus trade off the
potential benefits of nonmyopia and the rapidly increasing
computational burden of lookahead when choosing a policy.

2.2. Hardness of Approximation

We extend the above hardness result to show that no
polynomial-time active search policy can be a (constant
factor) approximation algorithm with respect to the optimal
policy, in terms of expected utility. In particular, under the
assumption that algorithms only have access to a unit cost
conditional marginal probability Pr(y = 1 | x,D) for any
x and D, where |D| is less than the budget,1 then:

Theorem 1. There is no polynomial-time active search pol-
icy with a constant factor approximation ratio for optimizing
the expected utility.

We prove this theorem in the appendix. The main idea is
to construct a class of instances where a small “secret” set
of elements encodes the locations of a large “treasure” of
targets. The probability of revealing the treasure is vanish-
ingly small without discovering the secret set; however, it
is extremely unlikely to observe any information about this
secret set with polynomial-time effort.

Despite the negative result of Theorem 1, we may still
search for policies that are empirically effective on real prob-
lems. In the next section, we propose a novel alternative
approximation to the optimal policy (2) that is nonmyopic,
computationally efficient, and shows impressive empirical
performance.

1The optimal policy operates under these restrictions.

3. Efficient Nonmyopic Active Search
We have seen above how to myopically approximate the
Bayesian optimal policy using an `-step-lookahead approx-
imate policy (5). Such an approximation, however, effec-
tively assumes that the search procedure will terminate after
the next ` evaluations, which does not reward exploratory
behavior that improves performance beyond that horizon.
We propose to continue to exactly compute the expected
utility to some fixed horizon, but to approximate the re-
mainder of the search differently. We will approximate the
expected utility from any remaining portion of the search by
assuming that any remaining points, {xi+1, xi+2, . . . , xt},
in our budget will be selected simultaneously in one big
batch. One rationale is if we assume that after observing Di,
the labels of all remaining unlabeled points are conditionally
independent, then this approximation recovers the Bayesian
optimal policy exactly. By exploiting linearity of expecta-
tion, it is easy to work out the optimal policy for selecting
such a simultaneous batch observation: we simply select the
points with the highest probability of being valuable. The
resulting approximation is

max
x′

E
[
u(Dt\Di) | x′,Di

]
≈
∑′

t−i Pr(y = 1 | x,Di),

(6)
where the summation-with-prime symbol

∑′
k indicates that

we only sum the largest k values.

Our proposed policy selects points by maximizing the ap-
proximate final expected utility using:

E
[
u(Dt) | xi,Di−1

]
≈ u(Di−1) +

Pr(yi = 1 | xi,Di−1) +

Eyi

[∑′
t−i Pr

(
y = 1 | x,Di

)]
︸ ︷︷ ︸

exploration, <t−i

. (7)

We will call this policy efficient nonmyopic search (ENS).
As in the optimal policy, we can interpret (7) naturally as
rewarding both exploitation and exploration, where the ex-
ploration benefit is judged by a point’s capability to increase
the top probabilities among currently unlabeled points. We
note further that in (7) the reward for exploration naturally
decreases over time as the budget is depleted, exactly as in
the optimal policy. In particular, the very last point xt is
chosen greedily by maximizing probability, agreeing with
the true optimal policy. The second-to-last point is also
guaranteed to match the optimal policy.

Note that we may also use the approximation in (6) as part of
a finite-horizon lookahead with ` > 1, producing a family of
increasingly expensive but higher-fidelity approximations to
the optimal policy, all retaining the same budget conscious-
ness. The approximation in (7) is equivalent to a one-step
maximization of (6). We will see in our experiments that this
is often enough to show massive gains in performance, and
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that even this policy shows clear awareness of the remaining
budget throughout the search process, automatically and
dynamically trading off exploration and exploitation.

3.1. Nonmyopic Behavior

To illustrate the nonmyopic behavior of our policy, we have
adapted the toy example presented by Garnett et al. (2012).
Let I , [0, 1]2 be the unit square. We repeated the fol-
lowing experiment 100 times. We selected 500 points i.i.d.
uniformly at random from I to form the input space X . We
create an active search problem by defining the set of targets
R ⊆ X to be all points within Euclidean distance 1/4 from
either the center or any corner of I . We took the closest
point to the center (always a target) as an initial training
set. We then applied ENS and the two-step-lookahead (4)
policies to sequentially select 200 further points for labeling.

Figure 1 shows a kernel density estimate of the distribution
of locations selected by both methods during two time in-
tervals. Figures 1(a–b) correspond to our method; Figures
1(c–d) to two-step lookahead. Figures 1(a, c) consider the
distribution of the first 100 selected locations; Figures 1(b,
d) consider the last 100. The qualitative difference between
these strategies is clear. The myopic policy focused on col-
lecting all targets around the center (Figure 1(c)), whereas
our policy explores the boundaries of the center clump with
considerable intensity, as well as some of the corners (Fig-
ure 1(a)). As a result, our policy is capable of finding some
of targets in the corners, whereas two-step lookahead hardly
ever can (Figure 1(d)). We can also see that the highest prob-
ability mass in Figure 1(b) is the center, which shows that
our policy typically saves many high-probability points until
the end. On average, the ENS policy found about 40 more
targets at termination than the two-step-lookahead policy.

3.2. Implementation and Time Complexity

The complexity of our policy (7) isO
(
n
(
2(n+n log n)

))
=

O(n2 log n), for n = |X |, because we need to compute the
approximate expected utility for all n points, evaluate an ex-
pectation over its label, conditioning the model and sorting
the posterior probabilities in the expectation. However, for
some classification models Pr(y = 1 | x,D), observing one
point will only affect the probabilities on a small portion
of the other points (e.g., in a k-nn model). We can exploit
such structure to reduce the complexity of our method by
avoiding unnecessary computation.

Specifically, suppose that after observing a point we only
need to update the probabilities of at-most m other points.
We can avoid repeatedly sorting the probabilities of every
unlabeled point when computing the score of each can-
didate point. Once the current probabilities are sorted
(O(n log n)), we only need to update m probabilities and
sort these as well (O(m logm)); now we can merge both

(a) (b)

(c) (d)

Figure 1: Kernel density estimates of the distribution of
points chosen by ENS (top) and 2-step lookahead (bottom)
during two different time intervals. The figures on the left
show the kernel density estimates for the first 100 locations;
the figures on the right, the last 100 chosen locations.

lists to get the top t − i posterior probabilities in time
O(t− i), where i is the index of current iteration. In sum-
mary, these tricks can reduce the computational complex-
ity to O

(
n(log n + m logm + t)

)
. We can see the com-

plexity is about the same as two-step lookahead, which is
O
(
n(log n+m)

)
when using the same tricks.

3.3. Pruning the Search Space

To further reduce the computational complexity, we can use
a similar strategy as suggested by Garnett et al. (2012) to
bound the score function (7) and prune points that cannot
possibly maximize our score. We consider the same two
assumptions proposed by these authors. First, observing a
new negative point will not raise the probability of any other
point being a target. Second, we are able to bound the maxi-
mum probability of the unlabeled points after conditioning
on a given number of additional targets; that is, we assume
there is a function p∗(n,D) such that

p∗(n,D) ≥ max
x∈X\D

Pr(y = 1 | x,D∪D′,
∑

y′∈D′y
′ ≤ n).

That is, the probability of any unlabeled point can become
at most p∗(n,D) after further conditioning on n or fewer
additional target points.

Consider an unlabeled point x at time i, and define π(x) =
Pr(y = 1 | x,Di) for the remainder of this discussion. The
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score (7), denoted f(x) here for simplicity, can be upper
bounded by

f(x) ≤ π ·
(
1 + (t− i)p∗(1,Di)

)
+

(1− π) ·
(∑′

t−i Pr(y
′ = 1 | x′,Di)

)
, U(π).

Note this upper bound is only a function of the current
probability π. Let x+ be the point with maximum probabil-
ity. Then f(x+) is certainly a lower bound of maxx f(x).
Hence, those points satisfying U

(
π(x)

)
< f(x+) can be

safely removed from consideration. Solving this inequality,
we have

π(x) <
f(x+)−

∑′
t−i Pr(y

′ = 1 | x′,D)
1 + p∗(1,D)(t− i)−

∑′
t−i Pr(y

′ = 1 | x′,D)
.

(8)
Then, all points with current probability lower than the
RHS of (8) can be removed from consideration. We will
show empirically that a large fraction of points can often be
pruned on massive datasets.

4. Related Work
Our method falls into the broader framework of active learn-
ing. The particular setting of finding elements of a valuable
class is rather unusual in active learning, which typically
considers the goal of training a high-fidelity model (Lewis
& Gale, 1994). For an exhaustive introduction to active
learning, we refer the reader to Settles (2010).

The multi-armed bandit (MAB) problem shares some sim-
ilarities with active search, where selecting an item can
understood as “pulling an arm.” However, in active search
the items are correlated, and, critically, they can never be
played twice. Despite the difference, we note that our ENS
policy is somewhat similar to the knowledge gradient policy
introduced by Frazier et al. (2008).

Active search can be seen as a special case of Bayesian
optimization (Brochu et al., 2010; Snoek et al., 2012) with
binary observations and cumulative reward. Several non-
myopic policies have been proposed for Bayesian optimiza-
tion in the regression setting (e.g., Ling et al. (2016)), and
our method is spiritually similar to the recently propopsed
GLASSES algorithm (González et al., 2016).

Vanchinathan et al. (2015) proposed a method called GP-
SELECT to solve a class of problems the authors call “adap-
tive valuable item discovery,” which generalizes active
search to the regression setting. GP-SELECT employs a
Gaussian process regression model in a manner inspired
by the Gaussian process upper confidence bound (GP-UCB)
algorithm (Srinivas et al., 2010). A parameter must be spec-
ified to balance exploration and exploitation, whereas our
method automatically and dynamically trades off these quan-
tities. The method is also critically tied to Gaussian process

regression as the underlying model, which is inappropriate
for classification. Our decision-theoretic approach does not
make any assumptions about the classification model.

Active search can also be seen as a special case of (partially
observable) Markov decision processes ((PO)MDPs), for
which there are known hardness results. Sabbadin et al.
(2007), for example, defined the class of so-called “purely
epistemic” MDPs (EMDPs), where the state does not evolve
over time. The authors showed that the optimal policy
for these problems cannot admit polynomial-time constant
approximations. Unfortunately, these hardness results, for
the very rich class of EMDPs are not trivially transferred to
the more-specific active search problem.

Our proposed approximation is similar in nature to the active
search policy proposed by Wang et al. (2013), which only
considered the effect of raising probabilities after observing
a positive label, and did not consider the budget. Rather, the
proposed score always encourages maximal exploration, in
opposition to the optimal policy.

There has been some attention to active search in the graph
setting where the input domain X is the nodes of a graph
(Garnett et al., 2011; Wang et al., 2013; Pfeiffer III et al.,
2014; Ma et al., 2015a). Our method does not restrict the
input space. Further, the classification models used in these
settings are often difficult to scale to large datasets, e.g.,
requiring the pseudoinverse of the graph Laplacian.

Finally, variations on the active search problem have also
been considered. Ma et al. (2014) proposed the active area
search problem, wherein a continuous function is sampled
to discover regions with large mean value, and Ma et al.
(2015b) extended this idea to define the more-general active
pointillistic pattern search problem. These settings do not
allow querying for labels directly and offer no insight to the
core active search problem.

5. Experiments
We implemented our approximation to the Bayesian optimal
policy with the MATLAB active learning toolbox,2 and have
compared the performance of our proposed ENS policy with
several baselines. First we compare with the myopic one-
step (greedy) and two-step approximations to the Bayesian
optimal policy, presented in (3–4). Note that Garnett et al.
(2012) and Garnett et al. (2015) thoroughly compared the
one- and two-step policies, with the finding that the less-
myopic two-step algorithm usually performs better in terms
of targets found, as one would expect. In our experiments we
will mainly focus on comparing our algorithm with myopic
two-step approximate policy.

We also consider a simple baseline which we call RANDOM-

2https://github.com/rmgarnett/active_learning
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GREEDY (RG). Here we randomly select points to query
(exploration) during the first half of the budget, and select
the remainder using greedy selection (exploitation). Al-
though naïve, this policy adapts to the budget.

We further compare with the score function proposed by
Wang et al. (2013), which we refer to as IMS:

IMS(x) = Pr(y = 1 | x,D)
(
1 + α IM(x)

)
; (9)

where IM(x) measures the “expected impact”, the sum of
the raised probabilities x results in if it is positive. Note
that it is difficult to determine the tradeoff parameter α
without (expensive) cross validation. The empirical results
in (Wang et al., 2013) indicate that α = 10−4 performs well
on average; we will fix this value in our experiments.

Finally, we have also considered the following UCB-style
(Auer, 2002) score function: α(x,D) = π + γ

√
π(1− π),

where π = Pr(y = 1 | x,D) and γ is a tradeoff param-
eter. The UCB score function is very popular and is the
essence of the methods in (Vanchinathan et al., 2015; Srini-
vas et al., 2010) developed for Gaussian processes, including
GP-SELECT. We considered various γ values and our exper-
iments show that it is no better than two-step lookahead, so
we present these results in the appendix due to space.

The probability model Pr(y = 1 | x,D) we will adopt is the
k-nearest-neighbor (k-NN) classifier as described in Section
7 of (Garnett et al., 2012). This model, while being rather
simple, shows reasonable generalization error, is nonparam-
eteric, and can be rapidly updated given new training data,
an important property in the active setting we consider here.
We will also adopt the probability bound (8) for this model
described in that work. Note IMS was proposed together (but
orthogonally) with a graph model for the probability, which
is computationally infeasible (O(n3)) for our datasets. So
we also use k-NN model for IMS.

5.1. CiteSeerx Data

For our first real data experiment, we consider a subset of
the CiteSeerx citation network, first described in (Garnett
et al., 2012). This dataset comprises 39 788 computer sci-
ence papers published in the top-50 most-popular computer
science venues. We form an undirected citation network
from these papers. The target class is papers published in
the NIPS proceedings; there are 2 190 such papers, 5.5% of
the whole dataset. Note that distinguishing NIPS papers in
the citation network is not an easy task, because many other
highly related venues such as ICML, AAAI, IJCAI, etc. are
also among the most-popular venues. A feature vector for
each paper is computed by performing graph principal com-
ponent analysis (Fouss et al., 2007) on the citation network
and retaining the first 20 principal components.

We select a single target (i.e., a NIPS paper) uniformly at
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Figure 2: The learning curve of our policy and other base-
lines on the CiteSeerx dataset.

random to form an initial training set. The budget is set to
t = 500, and we use k = 50 in the k-NN model. These pa-
rameters match the choices in (Garnett et al., 2012). We use
each policy to sequentially select t papers for labeling. The
experiment was repeated 20 times, varying the initial seed
target. Figure 2 shows the average number of targets found
for each method as a function of the number of queries.
We first observe that the ranking of the performance is ENS,
two-step, IMS, one-step, and RG, and our policy outperforms
the two-step policy in this task by a large margin. The mean
difference in number of targets found at termination vs. two-
step is 34.6 (189 vs. 155), an improvement on average of
22%. A two-sided paired t-test testing the hypothesis that
the average difference of targets found is zero returns a p-
value of p < 10−4, and a 95% confidence interval on the
increase in number of targets found of [19.80, 49.30].

Another interesting observation is that during the initial∼80
queries, ENS actually performs worse on average than all
baseline policies except RG, after which it quickly outper-
forms them. This feature perfectly illustrates an automatic
exploration–exploitation transition made by our policy. As
we are always cognizant of our budget, we spend the initial
stage thoroughly exploring the domain, without immediate
reward. Once complete, we exploit what we learned for
the remainder of the budget. This tradeoff happens auto-
matically and without any need for an explicit two-stage
approach or arbitrary tuning parameters.

Varying the Budget. A distinguishing feature of our
method is that it always takes the remaining budget into con-
sideration when selecting a point, so we would expect differ-
ent behavior with different budgets. We repeated the above
experiment for budgets t ∈ {100, 300, 500, 700, 900}, and
report in Table 1 the average number of targets found at
these time points for each method. We have the following
observations from the table. First, ENS performs better than
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Table 1: CiteSeerx (left) and BMG (right) data: Average number of targets found by the one- and two-step myopic policies
and ENS with different five budgets, varying from 100 to 900, at specific time steps. The performance of the best method at
each time waypoint is in bold.

CiteSeerx data

query number

policy 100 300 500 700 900

RG 19.7 60.0 104 140 176

IMS 26.3 86.3 147 214 281

one-step 25.5 80.5 141 209 273
two-step 24.9 89.8 155 220 287

ENS–900 25.9 94.3 163 239 308
ENS–700 28.0 105 188 259
ENS–500 28.7 112 189
ENS–300 26.4 105
ENS–100 30.7

BMG data

query number

policy 100 300 500 700 900

RG 48.6 144 243 336 427

IMS 93.6 276 451 629 799

one-step 90.8 273 450 633 798
two-step 91.0 273 452 632 802

ENS–900 89.0 270 453 635 815
ENS–700 91.3 276 460 645
ENS–500 92.4 279 466
ENS–300 92.8 279
ENS–100 94.5

all other baseline policies for every budget. Second, ENS is
able to adapt to the specified budget. For example, when
comparing performance after 100 queries, ENS–100 has lo-
cated many more targets than the ENS methods with greater
budgets, which at that time are still strongly rewarding ex-
ploration. A similar pattern holds when comparing other
pairs of ENS variations, with one minor exception.

5.2. Finding Bulk Metallic Glasses

Our next dataset considers an application from materials sci-
ence: discovering novel alloys forming bulk metallic glasses
(BMGs). BMGs have numerous desirable properties, includ-
ing high toughness and good wear resistance compared
to crystalline alloys. We compiled a database of 118 678
known alloys from the materials literature (e.g., (Kawazoe
et al., 1997; all)), an extension of the dataset from (Ward
et al., 2016). Of these, 4 746 (∼4%) are known to exhibit
glass-forming ability, which we define to be targets. We
conduct the same experiments described for the CiteSeerx

data above and show the results in Table 1. We can see the
results again demonstrate our policy’s superior performance
over all other methods, and its ability of adapting to the
remaining budget.

5.3. Virtual Drug Screening Data

We further conduct experiments on a massive database of
chemoinformatic data. The basic setting is to screen a large
database of compounds searching for those that show bind-
ing activity against some biological target. This is a basic
component of drug-discovery pipelines. The dataset com-
prises 120 activity classes of human biological importance
selected from the Binding DB (Liu et al., 2007) database. For
each activity class, there are a small number of compounds
with significant binding activity; the number of targets varies

from 200 to 1 488 across the activity classes. From these we
define 120 different active search problems. There are also
100 000 presumed inactive compounds selected at random
from the ZINC database (Sterling & Irwin, 2015); these are
used as a shared negative class for each of these problems.
For each compound, we consider two different feature rep-
resentations, also known as chemoinformatic fingerprints,
called ECFP4 and GpiDAPH3. These fingerprints are binary
vectors encoding the relevant chemical characteristics of the
compounds; see (Garnett et al., 2015) for more details.3 So
in total we have 240 active search problems, each with more
than 100 000 points, and with targets less than 1.5%.

As is standard in this setting, we compute fingerprint simi-
larities via the Jaccard index (Jasial et al., 2016), which are
used to define the weight matrix of the k-NN model from
above, setting k = 100 for all the experiments. For active
search policies, we again randomly select one positive as the
initial training set, and sequentially query t = 500 further
points. We also report the performance of a baseline where
we randomly sample a stratified sample of size 5% of the
database (∼5 000 points, more than 10 times the budget
of the active search policies). From this sample, we train
the same k-NN model, compute the active probability of
the remaining points, and query the 500 points with the
highest posterior activity probability. All experiments were
repeated 20 times, varying the initial training point. Note we
did not test IMS on these data due to computational expense.
Our policy nominally has higher time complexity, but our
pruning strategy can reduce the computation significantly
in practice, as we show in Section 5.4.

Table 2 summarizes the results. First we notice that all
3We did not conduct experiments on the MACCS fingerprint. It

was inferior in the findings of Garnett et al. (2015). A reviewer
of (Jasial et al., 2016) noted that it is no longer used, due to clear
underperformance compared to, e.g., ECFP4 and GpiDAPH3.
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Table 2: Number of active compounds found by various active search policies at termination for each fingerprint, averaged
over 120 active classes and 20 experiments. Also shown is the difference of performance between ENS and two-step
lookahead and the results of the corresponding paired t-test.

policy t-test results

fingerprint 100-NN RG one-step two-step ENS difference p-value 95% CI

ECFP4 189 189 289 297 303 5.29 1.76× 10−3 2.01 8.56
GpiDAPH3 134 170 255 261 276 14.8 3.90× 10−13 11.2 18.4
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Figure 3: The average difference in cumulative targets found
between ENS and the two-step policy, averaged over 120 ac-
tivity classes and 20 experiments on the ECFP4 fingerprint.

active search policies perform much better than the recall of
a simple classification algorithm, even though they observe
less than one-tenth the data. Interestingly, even the naïve
random-greedy (RG) policy performs much better than this
baseline, albeit much worse than other active search policies.
The two-step policy is again better than the greedy policy
for both fingerprints, which is consistent with the results
reported in (Garnett et al., 2015). The ENS policy performs
significantly better than two-step lookahead; a two-sided
paired t-test overwhelmingly rejects the hypothesis that the
performance at termination is equal in both cases.

Figure 3 shows the mean difference in cumulative tar-
gets found between ENS and the two-step policy for the
ECFP4 fingerprint. Again, we very clearly observe the au-
tomatic trade-off between exploration and exploitation by
our method. In the initial stage of the search, we explore the
space without much initial reward, but around query 200,
our algorithm switches automatically to exploitation, outper-
forming the myopic policy significantly at termination. The
mean difference curves for the other fingerprint is similar,
and can be found in the appendix, along with the individual
learning curves of the first six activity classes of ECFP4.

5.4. Effect of Pruning

To investigate how pruning can improve the efficiency of
computing the policy, we computed the average number
of pruned points across all 120 × 20 × 500 = 3 000 000
iterations of active search, for each fingerprint. On average
about 93% of the unlabeled points are pruned, dramatically
improving the computational efficiency by approximately a
corresponding linear factor. The time for each experiment
was effectively reduced from on the order of one day to that
of one hour. See the appendix for detailed results.

6. Conclusion
In this paper we proved the theoretical hardness of active
search and proposed an well-motivated and empirically
better-performing policy for solving this problem. In par-
ticular, we proved that no polynomial-time algorithm can
approximate the expected utility of the optimal policy within
a constant approximation ratio. We then proposed a novel
method, efficient nonmyopic search (ENS), for the active
search problem. Our method approximates the Bayesian
optimal policy by computing, conditioned on the location of
the next point, how many targets are expected at termination,
if the remaining budget is spent simultaneously. By taking
the remaining budget into consideration in each step, we
are able to automatically balance exploration and exploita-
tion. Despite being nonmyopic, ENS is efficient to compute
because future steps are flattened into a single batch, in
contrast to the recursive simulation required when comput-
ing the true expected utility. We also derived an effective
pruning strategy that can reduce the number of candidate
points we must consider at each step, which can further im-
prove the efficiency dramatically in practice. We conducted
a massive empirical evaluation that clearly demonstrated
superior overall performance on various domains, as well as
our automatic balance between exploration and exploitation.

Given the hardness result we proved, in general there is
little point to require more of an algorithm than superior
empirical performance. However, one exciting future di-
rection is to understand, under what conditions (e.g., some
assumption about the structure of problem instances) we
can find efficient algorithms with guarantees.
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