
Scheduling Jobs with Varying Parallelizability to Reduce
Variance

Anupam Gupta∗
Computer Science Dept.

Carnegie Mellon University
Pittsburgh PA 15213

anupamg@cs.cmu.edu

Sungjin Im†
Dept. of Computer Science.

University of Illinois
Urbana, IL 61801.

im3@illinois.edu

Ravishankar
Krishnaswamy∗

Computer Science Dept.
Carnegie Mellon University

Pittsburgh PA 15213
ravishan@cs.cmu.edu

Benjamin Moseley‡
Dept. of Computer Science.

University of Illinois
Urbana, IL 61801.

bmosele2@illinois.edu

Kirk Pruhs§
Computer Science Dept.
University of Pittsburgh

Pittsburgh PA 15260
kirk@cs.pitt.edu

ABSTRACT
We give a (2+ε)-speedO(1)-competitive algorithm for schedul-
ing jobs with arbitrary speed-up curves for the `2 norm of
flow. We give a similar result for the broadcast setting with
varying page sizes.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
Online Algorithms, Scheduling Algorithms

1. INTRODUCTION
We consider scheduling dynamically arriving jobs that

have varying degrees of parallelizability (that is, some jobs
may be sped up considerably when simultaneously run on
multiple processors, while other jobs may speed up by very

∗Supported in part by NSF awards CCF-0448095 and CCF-
0729022, and an Alfred P. Sloan Fellowship.
†Partially supported by NSF grants CCF-0728782, CNS-
0721899, and Samsung Fellowship.
‡Partially supported by NSF grant CNS-0721899.
§Supported in part by NSF grants CNS-0325353, IIS-
0534531, and CCF-0830558, and an IBM Faculty Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

little) on a multiprocessor system. The most obvious set-
tings where this problem arises is scheduling multi-threaded
processes on a chip with multiple cores/processors, and schedul-
ing multi-process applications in a server farm. We adopt
the following general model of parallelizability, which was
apparently first introduced in [6] and later used in [5, 7, 8,
16, 15, 4]: we have m identical fixed speed processors. Each
job i arrives at time ai, and consists of a sequence of phases.
Each phase needs to finish some amount of work, and has a
speedup function that specifies the rate at which work is pro-
cessed in that particular phase (as a function of the number
of processors assigned to the job). The speedup functions
have to be nondecreasing (a job doesn’t run slower if it is
given more processors), and sublinear (a job satisfies Brent’s
Theorem: increasing the number of processors doesn’t in-
crease the efficiency of computation), but the functions are
unconstrained otherwise.

The scheduler needs an assignment policy to determine
how many processors are allocated to each job at each point
in time. In order to be implementable in a real system, we
require that this policy be online, since the scheduler will
not in general know about jobs arriving in the future. This
policy also ideally should be nonclairvoyant, since a sched-
uler usually does not know the size/work of a job when the
job is released, nor the degree to which that job is paral-
lelizable. So a nonclairvoyant algorithm only knows when
jobs have been released and which have finished in the past,
and how many processors have been allocated to each job at
each point of time in the past.

Given a schedule, the most natural quality of service mea-
sure for a job is its response time (also called the flow or
waiting time) Fi := Ci − ai, which is the length of time
between when the job i is released at time ai and when it
completes at time Ci. To get a quality of service measure
for the entire schedule, one must combine the quality of ser-
vice measures of the individual jobs. The most commonly
used way to do this is to take the average, or the sum (the
`1 norm), of the flow times of the individual jobs. But to
quote from Silberschatz and Galvin’s classic text Operat-
ing Systems Concepts [17], “A system with reasonable and
predictable response time may be considered more desirable
than a system that is faster on the average, but is highly

variable.” and “ . . . for interactive systems, it is more im-
portant to minimize the variance in the response time than it
is to minimize the average response time.” Hence, in many
settings, the `2 norm (the square root of the sum of the
squares) of job flow times may be a better quality of service
measure of schedules than the `1 norm of job flow times.

A Simple Instance: As a well known concrete example of
difference between the `1 and `2 norms, consider a single-
machine instance where two jobs are released at time 0, and
one job is released at each integer time 1, 2, . . . , n. All jobs
are identical, and the system takes one unit of time to finish
each job. When the objective is to minimize the `1 norm
of the flow time, one can see that every non-idling schedule
is optimal. In particular, the schedule that has flow time
1 for all jobs except for one of the jobs released at time 0
(which will have flow time n) is also optimal. This however
is not optimal for the `2 norm. Scheduling jobs in order of
their release time results in the optimal schedule where all
jobs have flow time at most 2. Thus a schedule that is good
under the `2 norm reduces the variance of the job flow times
relative to an optimal schedule for the `1 norm.

Our Results: To recap, we address the problem of de-
signing an online nonclairvoyant assignment policy that is
competitive for the objective of the `2 norm of the flow time
for jobs with arbitrary speed-up curves. Our main result is
the following:

Theorem 1.1 We give a nonclairvoyant assignment policy
that is (2 + ε)-speed O(1)-competitive for minimizing the `2
norm of the flow time for jobs with arbitrary speedup curves.

Note that all our results use resource augmentation: An al-
gorithm A is s-speed c-competitive if, for every instance, the
algorithm A with processors running at speed s guarantees
a schedule whose objective is within a factor of c of the value
of the optimal objective with unit speed processors. Intu-
itively, an s-speed O(1)-competitive algorithm guarantees
that the schedule can handle a load up to a 1

s
fraction of the

load that an optimal offline scheduler can handle. Thus an
(1 + ε)-speed O(1)-competitive algorithm is said to be scal-
able since it can handle almost the same load as optimal.
For further elaboration, see [14, 13]. It is well known that
no online algorithm can be O(1)-competitive for `k norms
of flow time without resource augmentation [2].

1.1 Context, Intuition, and Our Techniques
To get a feel for the problem, let us consider two special

cases: Consider first the case that all jobs are fully paral-
lelizable (i.e., increasing the number of processors assigned
to a job by a factor f reduces the time required by a factor
of f), which is essentially equivalent to having a single pro-
cessor. In the initial paper popularizing resource augmen-
tation analysis [10], the algorithm Shortest Elapsed Time
First (SETF) which shares the processors evenly among all
jobs that have been processed the least (which necessarily
are the later arriving jobs) was shown to be scalable for the
`1 norm of flow. This was generalized by [2] to show that
SETF is scalable for all `k norms of flow for 1 ≤ k < ∞.
So intuitively, in the case of parallel work, the “right” algo-
rithm is independent of the norm, equivalently the “right”
algorithm for the `1 norm extends to all `k norms!

Now consider the more general case of jobs with arbi-
trary speed-up curves, but only for the `1 norm. [5] showed

that the assignment policy EQUI that shares the processors
evenly among all active jobs is (2+ε)-speedO(1)-competitive
for average flow time. Subsequently, [8] introduced the algo-
rithm Late Arrival Processor Sharing (LAPS), which shares
the processors evenly among the latest arriving constant
fraction of the jobs, and showed that LAPS is scalable for
average flow time. The intuition behind LAPS was to mimic
SETF, by giving more processors to later arriving jobs, but
to spread the processing power more evenly in case that
the latest arriving jobs are sequential (their processing rate
does not increase even if they are assigned more proces-
sors). In this special case, the “right” strategy for arbitrary
speed-curves is basically the same as the “right” strategy for
parallel work.

Given these two special cases, everyone’s (that we are
aware of) initial reaction to the question of the design of a
policy for the `2 norm of flow for jobs with arbitrary speed-
up curves, was that LAPS should be scalable. The intuition
is understandable: [10] showed that for parallel work, favor-
ing the most recent jobs is the right strategy to minimize the
`1 norm of flow. Then [2] showed that considering general
`k norms didn’t change the “right” strategy, and [8] showed
that allowing jobs with arbitrary speed-up curves didn’t
drastically change the right strategy. Intuitively it seems
that considering arbitrary `k norms and arbitrary speed-up
curves together shouldn’t drastically change the right strat-
egy. However, this intuition is misleading: we show in Sec-
tion 3 that LAPS is not O(1)-speed O(1)-competitive for
the `k norm of flow when k ≥ 2.

1.1.1 The Mistake in the Intuition, and Our Algo-
rithm

Considering why LAPS fails to be O(1)-competitive for
the `2 norm, even with faster processors, offers insight into
how to design such an algorithm. Just as the total flow timeP
i Fi is the integral over time of the number of jobs unfin-

ished at that time, the sum of the squares of the flow timesP
i F

2
i is proportional to the integral over time, of the ages

of the jobs at that time. The key observation in [2] was that
if SETF, with a (1 + ε)-speed processor, has unfinished jobs
of a particular age, then any schedule on a unit speed proces-
sor must have a comparable number of unfinished jobs that
are at least as old: this observation implies the competitive-
ness of SETF for all `k norms rather directly. The lower
bound instance in Section 3 shows that for jobs with arbi-
trary speed-up curves, LAPS may have devoted too much
processing to sequential jobs in the past, and hence it may
have many more old jobs than is necessary. And as LAPS
focuses on new jobs, these old jobs will remain unfinished,
driving up the `2 norm of flow for LAPS relative to optimal.
This lower bound instance, and the simple instance of the
stream of unit work jobs, suggests that the online algorithm
must give a greater share of the processing power to older
jobs for `2 norm of flow time for jobs with arbitrary speed-up
curves.

Our algorithm addresses this by distributing the proces-
sors proportional to the age of the jobs, which is the rate at
which that job is currently driving up the `2 norm of flow.
Combining this intuition with an idea used in [8] to focus
only on a fraction of the recent jobs, we design an algorithm
WLAPS that is (2 + ε)-speed O(1)-competitive for the `2
norm of flow. Essentially, WLAPS distributes the proces-
sors to the latest arriving constant fraction of jobs. However,

the proportion of resources a job gets is related to the age
of the job.

1.1.2 Other Results: Broadcast Scheduling, and Other
Norms

To explain broadcast scheduling, consider a web server
serving static content on a broadcast channel. If the web
server has multiple unsatisfied requests for the same file,
broadcasting that file only once simultaneously satisfies all
the users who issued these requests. [7] observed that broad-
cast scheduling in the `1 norm can be viewed as a special
case of scheduling jobs with arbitrary speed-up curves in the
`1 norm, in which all jobs consist of a sequential phase fol-
lowed by a parallel phase. Indeed, the results of [7, 1] showed
how to convert any s-speed c-competitive nonclairvoyant al-
gorithm for scheduling jobs with arbitrary speedup curves
into a (1+ε)s-speed c-competitive nonclairvoyant algorithm
for broadcast scheduling. Combining this reduction with the
analysis of LAPS in [8], one obtains a scalable algorithm
for broadcast scheduling for the `1 norm of flows. Unfortu-
nately, this reduction from broadcast scheduling given in [7,
1] does not seem to work for the `2 norm of flow. However,
in Section 4, we directly show that the broadcast version of
WLAPS is indeed (2 + ε)-speed O(1)-competitive for the `2
norm of flow for broadcast scheduling.

Our techniques give algorithms for other `k norms as well.
In particular, we can give nonclairvoyant algorithms that are
(k+ε)-speed O(k2)-competitive for the objective of minimiz-
ing the `k norm of the flow times. We should remark that
improving our results for larger values of k would be interest-
ing, though mostly of academic interest, since as a practical
matter, the interesting values of k are those in [1, 3] ∪ {∞}.

1.2 Related Results
Consider first the case that all the work is fully paral-

lelizable and and the `1 norm. It is well known that the
online clairvoyant algorithm Shortest Remaining Processing
Time is optimal. The competitive ratio of any determinis-
tic nonclairvoyant algorithm is Ω(n1/3), and the competitive
ratio of every randomized algorithm against an oblivious ad-
versary is Ω(logn) [12]. A randomized version of the Multi-
Level Feedback Queue algorithm is O(logn)-competitive [11,
3].

As for broadcast scheduling, a recent result of Im and
Moseley [9] gives a scalable algorithm for the problem of
minimizing the `1 norm of the requests, when all pages are
of unit size. Subsequently [1] shows a scalable algorithm,
inspired by LAPS, for the general problem with arbitrary
page sizes.

Chan et al. [4] consider the problem of nonclairvoyant
scheduling of jobs with varying degrees of parallelizability
on a multiprocessor, where each machine can be scaled at a
different speed. They give a O(logm)-competitive algorithm
for the problem of minimizing the sum of average flow time
and energy, where the power function varies as sα for con-
stant α, under some assumptions about the jobs.

1.3 Formal Problem Statement and Notation
We now formally define the problem and introduce no-

tation required for our algorithm and analysis. An arbi-
trary problem instance consists of a collection of jobs J =
{J1, . . . , Jn} where job Ji has a release/arrival time of ai
and a sequence of phases

˙
J1
i , J

2
i , . . . , J

qi
i

¸
. Each phase is

an ordered pair 〈wqi ,Γ
q
i 〉, where wqi is a positive real number

that denotes the amount of work in the phase and Γqi is a
function, called the speedup function, that maps a nonneg-
ative real number to a nonnegative real number. The func-
tion Γqi (p) represents the rate at which work is processed for
phase q of job i when the job is run on p processors running
at speed 1. Henceforth, we may interchangeably use job i
and job Ji when the context is clear.

A feasible schedule Ss for the job set J with n jobs with
sm available processors (one may think of s as a parameter)
specifies for each time, and for each job, a nonnegative real
number specifying the number of processors assigned to the
job. Notice that we allow a job to be scheduled on a non-
integral number of machines, and this can be translated to
an actual scheduling on machines by having schedules which
are preemptive and migratory. Such an assignment would be
feasible as long as

Pn
i=1 Ss(i, t) ≤ sm for all time instants

t, where Ss(i, t) is the number of processors schedule Ss
allocates to job i at time t. In words, at any time, the total
number of processors allocated to the jobs must not exceed
sm.

For such a schedule Ss, suppose a job i begins its qth phase
at time tq. Then, the completion time of this stage (which
is also when the subsequent stage begins) is the unique time

tq+1 such that
R tq+1
tq

Γqi (Ss(i, t))dt = wqi . The completion

time Ci of the job is then the completion time of its final
phase qi.

In the `k norm objective, the total cost incurred by this
solution can then be expressed as

cost(Ss) =

0@X
i∈[n]

(Ci − ai)k
1A1/k

Recall that a nonclairvoyant algorithm only knows when
jobs have been released and finished in the past, and which
jobs have been run on each processor each time in the past.
In particular, for any phase q, the algorithm does not know
the values of wqi , and the speedup function Γqi . In fact, it is
not even aware of the progression of a job from one phase
to the next.

Notice that, by having a parameter s to alter the number
of available processors, the notion of resource augmentation
we have (implicitly) assumed here is that of machine aug-
mentation and not speed augmentation. However, since an
s speed processor is as powerful as s unit speed processors
when preemption is allowed, our results would translate to
the speed augmentation model as well. This enables us to
make the following simplification: for ease of analysis, we
scale the number of processors by a factor of m, and assume
that the optimal solution has a single unit speed processor
and the online algorithm has s unit speed processors.

2. NON-CLAIRVOYANT SCHEDULING WITH
ARBITRARY SPEEDUP CURVES

2.1 Restricted Instances are Sufficient
As by now is standard, we can show that we only need

to focus on restricted instances where every job is composed
of either fully parallelizable phases or completely sequential
phases. A phase is said to be completely parallelizable if
Γqi (p) = p for all p, and completely sequential if Γqi (p) = 1

for all values of p. That is, sequential phases progress at the
same rate regardless of the number of processors allocated.

To show this, we perform the following reduction from an
arbitrary instance I of the problem to such a restricted in-
stance I′ with the following properties holding true: (i) the
schedule produced by the non-clairvoyant algorithm remains
the same for both instances I and I′, and (ii) the cost of
the optimal offline solution for the instance I′ is at most the
cost of an optimal offline solution for the first instance I.
This would ensure that if our algorithm is α-competitive on
instance I′, then it has a competitive ratio of at most α on
instance I as well.

Let NCAlg denote any non-clairvoyant algorithm. Our re-
duction works in the following fashion: For each job i that is
released in I, we release the job i′ in I′ at the same time ai.
Now consider an infinitesimally small interval [t, t+dt), and
let NCAlg devote pai processors towards j in this time inter-
val. Also, let the job be in some phase with parallelizability
Γ in this time interval. Therefore, the online algorithm effec-
tively does a work of w = Γ(pai)dt for job i in time interval
[t, t+dt). Now, let us focus on the time interval [t∗, t∗+dt∗)
when the optimal solution works on this exact w amount
of the job i (note that it could occur before or after t). Let
the optimal solution devote poi processors towards doing this
work w. Notice that the definition of [t∗, t∗ + dt∗) and poi
imply that Γ(poi)dt

∗ = w = Γ(pai)dt, which in turn implies
that

Γ(poi)

Γ(pai)
=

dt

dt∗
(1)

If poi ≥ pai , then in the new instance I′, we replace this
w amount of work for job i with w′ = pai dt amount of fully
parallelizable work. Notice that by this change, when w
amount of work was finished by the online algorithm in I,
an equivalent w′ amount of work is done in I′, and so the
job progresses at the same rate for the online algorithm in
either instance. Furthermore, since poi ≥ pai , we have that

poi
pai
≥ Γ(poi)

Γ(pai)
=

dt

dt∗
(2)

and therefore an optimal solution for I′ can fit in the w′

amount of fully parallelizable work at same time interval
[t∗, t∗ + dt∗) when the optimal solution for I worked on the
corresponding w amount of i. Here, the equation (2) follows
from the sublinear nature of the speed-up function.

On the other hand, if poi < pai , then in our instance I′, we
replace this w amount of work for job i with w′ = dt amount
of fully sequential work. Notice that by this change, when
w amount of work was finished by the online algorithm in
I, an equivalent w′ amount of work is done in I′, and again
the job progresses at the same rate for the online algorithm
in either instance. Furthermore, since in this case poi < pai ,
we have that

1 ≥ Γ(poi)

Γ(pai)
=

dt

dt∗
(3)

and therefore dt∗ ≥ dt. Therefore, an optimal solution for
I′ can fit in the w′ = dt amount of fully sequential work in
same time interval [t∗, t∗ + dt∗) when the optimal solution
for I worked on the corresponding w amount of i.

Hence, in either case, we see that the flow time of every
job in the non-clairvoyant online algorithm is same for both
instances, and the flow time in the optimal solution for I′ is

at most that for I. Therefore, it is sufficient to design non-
clairvoyant algorithms which are competitive against such
extremal instances. Furthermore, since any phase of a job
is either completely sequential or completely parallelizable,
an algorithm working on s machines is equivalent to one
working on a single machine with speed s. Hence, in the
following section, we shall refer to s as the speed advantage
the online algorithm has over the optimal offline adversary.

2.2 Non-clairvoyant Algorithm WLAPS
We first describe our non-clairvoyant preemptive algo-

rithm WLAPS for Weighted Latest Arrival Processor Shar-
ing. As can be deduced from its name, WLAPS is inspired
by LAPS [8], a scalable algorithm for minimizing the total
flow time of the jobs (i.e. when k = 1). Before we de-
scribe our algorithm, let us introduce some notation. First
and foremost, we will assume that the algorithm WLAPS
is given a speed-up of a factor of s. In other words, we
can assume that WLAPS is given a s-speed processor while
the optimal adversary is given only a unit-speed processor.
Let β be a scaling parameter that determines the fraction of
weight we consider at any instant of time. The speed-up s
will depend on β, and we will fix this parameter later.

For each job i ∈ [n], let us define its weight at time t
to be wi(t) = k(t − ai)k−1. Informally, wi(t) denotes the
rate of increase of the kth power of the flow time of job i at
time t (which is also the incremental cost incurred by the
algorithm due to job i being alive at time t). At any time t,
let Na(t) denote the set of jobs that are alive in the queue
of our algorithm, i.e. Na(t) := {i ∈ [n] | ai ≤ t < Ci},
where Ci is the completion time of job i. Among the set of
jobs Na(t), let N ′a(t) denote the set of those jobs with the
latest arrival times whose weights sum up to βw(t), where
w(t) =

P
i∈Na(t) wi(t).

It would be useful to observe that the objective function
we are interested in is equivalent to (after raising the `k
objective by a power of k) minimizing

X
i∈[n]

(Ci − ai)k =

Z ∞
0

X
i∈Na(t)

wi(t)dt

We are now ready to describe our algorithm: At any
time t, the algorithm WLAPS simply distributes its pro-
cessing power among the jobs in N ′a(t), in proportion to
their weights at time t. Let xi(t) denote the fraction of pro-
cessing power job i receives at time t under the schedule of
WLAPS. Then,

xi(t) := s · wi(t)
βw(t)

, ∀i ∈ N ′a(t)

Notice that the total processing power used at any time
is exactly s. We remark that when k = 1 our algorithm
WLAPS is exactly the same as LAPS, since the weights of
all jobs are identically equal to 1.

A Simplifying Assumption: We assume that there exists
a set of latest arriving jobs whose weights sum up to exactly
βw(t). Otherwise, a slight modification should be made to
the algorithm. The set N ′a(t) which WLAPS works on is
now defined to be the minimal set of latest arriving jobs
whose weights exceed βw(t). Let j be the earliest arriving
job in N ′a(t). The amount of processing power that every
job gets in N ′a(t) except j stays the same. The job j receives

a processing power of xj(t) := s ·
βw(t)−(

P
i∈N′a(t)\{j} wi(t))

βw(t)
.

In words, roughly speaking, the processing power the job
j gets is proportional to its weight which “overlaps” the β
fraction of weights. With this small elaboration, we can
remove the assumption and the analysis easily follows. We
however stick to the simplifying assumption to make our
analysis more readable.

2.3 Analysis
Our analysis is based on a potential function argument,

inspired by [8]. To formally describe the potential function,
we need to introduce some more notation.

For any job i, let σi denote the total sequential work for
job i and ρi denotes the total parallel work for job i. Recall
(from Section 2.2) that for any job i and time t, xi(t) denotes
the fraction of processing the algorithm WLAPS dedicates
towards job i. Similarly, let x∗i (t) denote the fraction of
processing the optimal offline schedule OPT allocates for i
at time t. Without loss of generality, we can assume that
x∗i (t) > 0 only if job i is in parallel phase under the schedule
by the adversary. Since we assumed that the total processing
power for WLAPS is s and that for OPT is 1, it follows thatP
i∈N′a(t) xi(t) ≤ s and that

P
i∈No(t) x

∗
i (t) ≤ 1.

For any job i ∈ [n], let On(i, t1, t2) denote the total amount
of parallel work for job i done by WLAPS during the time
interval [t1, t2]. To quantify this formally, we need to define
a variable Ii(t) which indicates whether job i is in a parallel
phase for WLAPS at time t, (in which case Ii(t) = 1) or in
a sequential phase (Ii(t) = 0). Then,

On(i, t1, t2) :=

Z t2

t1

xi(t)Ii(t)dt

Note that On(i, t1, t2) ≤ ρi for any job i and any time interval
[t1, t2].

Similarly, for each job i ∈ [n], let Opt(i, t1, t2) denote the
total amount of parallel work for job i done by OPT during
[t1, t2]. Since we had assumed that OPT works on a job
only if it is in a parallel phase, we have that

Opt(i, t1, t2) :=

Z t2

t1

x∗i (t)dt

We will then introduce the following variable that will be
used in our potential function to keep track of parallel work
for job i:

zi(t) =
On(i, t,∞) · Opt(i, ai, t)

ρi

As for sequential work, let yi(t) denote how much the
adversary OPT is ahead of WLAPS in the sequential work
of job i at time t. If WLAPS is ahead of the adversary in
the sequential work, yi(t) is set to zero.

Once again, recall that Na(t) denotes the set of jobs that
are yet unfinished at time t by the algorithm WLAPS. Sim-
ilarly, define No(t) to denote the jobs alive under OPT’s
schedule.

Our potential function Φ(t) is defined as follows

Φ(t) :=
1

β

X
i∈Na(t)

zi(t)
X

aj≤ai,j∈Na(t)

wj(t)+
8k

β3

X
i∈Na(t)

wi(t)yi(t)

For the remainder of this section, our goal is to show the
following bound

d

dt
A(t) +

d

dt
Φ(t) ≤ 16k3

β3

d

dt
OPT(t) (4)

Here d
dt
A(t) =

P
i∈Na(t) wi(t) denotes the rate of increase

of the objective function for WLAPS, and d
dt

OPT(t) de-
notes the analogous quantity for the optimal schedule OPT.
(some exceptional details should be taken care of). Since
Φ(0) = Φ(∞) = 0, this would suffice to analyze competi-
tive ratio of WLAPS, by a simple amortized analysis (by
integrating both sides of the above inequality from 0 to ∞).

In order to show equation (4), let Φ1(t) and Φ2(t) denote
the first and the second term in Φ(t) respectively. For ease
of analysis, we will separately investigate the change of Φ(t)
for the following events, and then put the pieces together.

Change of the Potential Function: We will first consider
time instants that induce discontinuities in Φ and show that
it does not jump abruptly. It is easy to see that the only
sources of discontinuity is when new jobs arrive, and when
jobs are completed by WLAPS (in which case they leave
the set Na(t)). We consider these two situations now.

Job Arrival: We show that ∆Φ = 0. When a job i arrives
at time t , zi(t) = yi(t) = 0 because the optimal solution
has not had a chance to work on job i yet. It is easy to see
that any new terms which appear are zero, since the jobs
are indexed according to their arrival time. Thus, ∆Φ = 0.

Job Completion for WLAPS: When a job i is completed by
the online algorithm, some terms may disappear from Φ(t).
Since all terms are always non-negative, ∆Φ(t) ≤ 0.

We now consider an infinitesimally small time interval
[t, t + dt) and show that the equation (4) holds. To show
this, we individually consider the various changes that oc-
cur to Φ, and collect them all at the end.

Processing by OPT: The amount of parallel work for job
i ∈ Na(t) done by the adversary in [t, t + dt) is at most
x∗i (t)dt. Thus,

∆Φ1(t) ≤ 1

β

X
i∈Na(t)

On(i, t,∞) · x∗i (t)dt
ρi

X
aj≤ai,j∈Na(t)

wj(t)

≤ 1

β
dt

X
i∈Na(t)

x∗i (t)
X

aj≤ai,j∈Na(t)

wj(t)

≤ 1

β
dt

X
i∈Na(t)

x∗i (t)
d

dt
A(t)

≤ 1

β

d

dt
A(t) dt [since

P
i x
∗
i (t) ≤ 1]

We now consider ∆Φ2(t). The maximum increase occurs
when all jobs in No(t) are in sequential phase. Since yi(t)
could increase by dt for each job i ∈ No(t) ∩Na(t), we have
∆Φ2(t) ≤ 8k

β3

P
i∈No(t) wi(t)dt ≤

8k
β3 ∆OPT(t). Hence,

d

dt
Φ(t) ≤ 1

β

d

dt
A(t) +

8k

β3

d

dt
OPT(t)

Processing by WLAPS: We partition Na(t) into S(t) and
P(t) depending on whether a job in Na(t) is in sequential
phase or parallel phase at time t under the schedule by
WLAPS. Also, let P ′(t) := N ′a(t) ∩ P(t) denote the set
of jobs that WLAPS is working on at time t, which are in
their parallel phases.

Consider any job i ∈ P ′(t)\No(t). Since OPT has already
finished job i, we have that zi(t) = On(i, t,∞). Furthermore,

zi(t) decreases at a rate of −s wi(t)
βw(t)

by definition of our algo-

rithm. Also we have that
P
j∈Na,aj≤ai wj(t) ≥ (1 − β)w(t)

from the fact that i ∈ N ′a(t). Hence,

d

dt
Φ1(t) ≤ − s

β

X
i∈P′(t)\No(t)

wi(t)

βw(t)

X
j∈Na(t),aj≤ai

wj(t)

≤ −s(1− β)

β2

X
i∈P′(t)\No(t)

wi(t)

For any job i ∈ S(t) \ No(t), whether WLAPS works on
i or not, the rate of change of yi(t) is −1, since i is in a
sequential phase and OPT has completed the job. Thus
d
dt

Φ2(t) ≤ − 8k
β3

P
i∈S(t)\No(t) wi(t). In sum, we have that

d

dt
Φ(t) ≤ −s(1− β)

β2

X
i∈P′(t)\No(t)

wi(t)−
8k

β3

X
i∈S(t)\No(t)

wi(t)

In the remaining case, the following lemma will be used.

Lemma 2.1 For any job j ∈ [n],
P
i∈[n],ai≥aj Opt(i, ai, t) ≤

t− aj.

Proof: Consider any job i such that ai ≥ aj . Note that
OPT did Opt(i, ai, t) amount of parallel work for job i dur-
ing [ai, t], therefore during [aj , t]. The lemma immediately
follows from the fact that the adversary is given only speed
1. �

Time Elapse: We investigate the increase rate of the poten-
tial function only due to time elapsing.

d

dt
Φ1(t) =

1

β

X
i∈Na(t)

zi(t)
X

j∈Na(t),aj≤ai

k(k − 1)(t− aj)k−2

=
1

β
k(k − 1)

X
j∈Na(t)

(t− aj)k−2
X

i∈Na(t),ai≥aj

zi(t)

But notice that zi(t) = On(i,t,∞)·Opt(i,ai,t)
ρi

≤ Opt(i, ai, t),

since On(i, t,∞) ≤ ρi. Therefore, we get that d
dt

Φ1(t) is at
most

1

β
k(k − 1)

X
j∈Na(t)

(t− aj)k−2
X

i∈Na(t),ai≥aj

Opt(i, ai, t)

≤ 1

β
k(k − 1)

X
j∈Na(t)

(t− aj)k−2(t− aj) [By Lemma 2.1]

=
1

β
k(k − 1)

X
j∈Na(t)

(t− aj)k−1 =
1

β
(k − 1)

d

dt
A(t)

Before addressing d
dt

Φ2(t) due to time, notice that for any
job i, it holds that (t− ai) ≥ yi(t) because yi(t) amount of
time is required to complete yi(t) amount of sequential work
of job i.

d

dt
Φ2(t) =

8k

β3

X
i∈Na(t)

k(k − 1)(t− ai)k−2yi(t)

≤ 8k2

β3
(k − 1)

X
i∈Na(t)

(t− ai)k−2yi(t)

In sum we obtain

d

dt
Φ(t) ≤ 1

β
(k − 1)

d

dt
A(t) +

8k2

β3
(k − 1)

X
i∈Na(t)

(t− ai)k−2yi(t) (5)

We now want to bound
P
i∈Na(t)(t−ai)

k−2yi(t) by d
dt
A(t).

Now, since we know that yi(t) ≤ (t−ai), it is easy to see that
k
P
i∈Na(t)(t − ai)

k−2yi(t) ≤ d
dt
A(t). However, this bound

does not suffice for the rest of the analysis, because of the
magnitude of the constant sitting in front of this term (which

is 8k2

β3 (k−1)). To handle this issue, we only consider the jobs

which are “old” when compared to 8k2

β3 σi, for this sum, and

terms due to all other “young” jobs will be accounted for,
separately. The trick to do this is simple. For all i ∈ Na(t),
we charge (t−ai)k−2yi(t) directly to the optimal solution as

long as t− ai ≤ 8k2

β3 σi; this can be done since OPT requires

at least σi amount of time to get job i done.

Lemma 2.2 The total contribution of all the young jobs,

integrated over time is at most (8k2

β3)kOPT

Proof: Consider any job i. We now show that that the
total contribution of the term (t− ai)k−2yi(t) over all times

at which i remains young (i.e. (t − ai) ≤ 8k2

β3 σi) can be

bounded by the cost it incurs in OPT’s schedule. This can
then be charged to the optimal solution by adding an extra
factor to the competitive ratio. More specifically, the total
increase (summed over all jobs) can be at most

X
i∈[n]

Z ai+
8k2

β3 σi

ai

8k2

β3
(k − 1)(t− ai)k−2yi(t) dt

≤
X
i∈[n]

(
8k2

β3
σi)

k

≤ (
8k2

β3
)kOPT.

The last inequality holds knowing that OPT ≥
P
i∈[n](σi)

k

because each job i takes at least σi time units to complete
in the optimal solution’s schedule. �

Since we can handle all young jobs in the above fashion, let

us only consider old jobs, such that t− ai ≥ 8k2

β3 σi ≥ 8k2

β3 yi.

In the worst case, all the jobs are old. In this case, equation
(5) can be simplified to,

d

dt
Φ(t) ≤ (

1

β
+ 1)(k − 1)

d

dt
A(t).

Final Step of the Analysis:

Recall that throughout the analysis, our main goal has been
to show that

d

dt
A(t) +

d

dt
Φ(t) ≤ 16k3

β3

d

dt
OPT(t) (6)

We first complete this proof, and then show how this leads
us to the desired guarantees. By summing up the change

(rate) of Φ(t) for all the cases, it is easy to see that show-
ing the following inequality, is sufficient for showing that in
equation (6) holds.

8k3

β3

d

dt
OPT(t) ≥ (

1

β
+ 1)k

d

dt
A(t)−

s(1− β)

β2

X
i∈P′(t)\No(t)

wi(t)−

8k

β3

X
i∈S(t)\No(t)

wi(t)

To this end, we consider the following three cases.

(a) d
dt

OPT(t) ≥ β2

4
d
dt
A(t): This is the simplest case. Since

the adversary has unfinished jobs whose total weight is sig-
nificant, we can charge the positive term involving d

dt
A(t) to

d
dt

OPT(t). Formally, (1
β

+ 1)k d
dt
A(t) ≤ 2k

β
4
β2

d
dt

OPT(t) ≤
8k2

β3
d
dt

OPT(t).

(b)
P
i∈S(t)\No(t) wi(t) ≥

β2

4
d
dt
A(t): In this case, the sec-

ond negative term for jobs in S(t) will be used to offset the
positive term. Indeed, we have (1

β
+ 1)k d

dt
A(t)−

8k
β3

P
i∈S(t)\No(t) wi(t) ≤

2k
β

d
dt
A(t)− 2k

β
d
dt
A(t) ≤ 0

(c) d
dt

OPT(t) < β2

4
d
dt
A(t) and

P
i∈S(t)\No(t) wi(t) <

β2

4
d
dt
A(t):

This is the final case, where the first negative term involv-
ing parallel-phase jobs will override the positive term. Since
P ′(t)\No(t) = (N ′a(t)∩P(t))\No(t) = N ′a(t)\S(t)\No(t), it
follows that

P
i∈P′(t)\No(t) wi(t) ≥

P
i∈N′a(t) wi(t)−

P
i∈S(t) wi(t)−P

i∈No(t) wi(t) ≥ β(1 − 1
2
β) d

dt
A(t). Substituting s = k(1 +

16β) we obtain,

(
1

β
+ 1)k

d

dt
A(t)− s(1− β)

β2

X
i∈P′(t)\No(t)

wi(t)

≤
“

(
1

β
+ 1)k −

k(1 + 16β)(1− β)(1− 1
2
β)

β

” d
dt
A(t)

≤ k

β

“
(1 + β)− (1 + 16β)(1− 3

2
β)
” d
dt
A(t)

≤ 12k(−1 + 2β)
d

dt
A(t) ≤ 0 [By 0 < β ≤ 1

2
]

And this completes the proof that equation (6) holds at
all times. To complete the analysis, let WLAPSs denote
the total cost incurred by WLAPS (when given a speed
of s), and OPT1 denote the cost of the optimal schedule
(operating at unit speed). We have that the cost incurred
by WLAPSs is

Z ∞
0

d

dt
A(t)dt =

Z ∞
0

(
d

dt
A(t) +

d

dt
Φ(t))dt

≤
Z ∞

0

“16k3

β3

d

dt
OPT(t)dt

”
+ (

8k2

β3
)kOPT1

= (
16k3

β3
+ (

8k2

β3
)k)OPT1 ≤ 2(

8k2

β3
)kOPT1

Here, the second equality easily follows from the fact that
Φ(0) = Φ(∞) = 0. The third inequality follows from in-

equality (6). The additional term is due to the fact that
we had not accounted for the contribution of “young” jobs
towards d

dt
Φ(t) in (6), but showed (in Lemma 2.2) that the

total cost integrated over time is at most (8k2

β3)kOPT1. As

a result, by scaling the speed WLAPS is given, we obtain
the following theorem.

Theorem 2.3 Let 0 < β ≤ 1
2

be a constant. Then WLAPS

is k(1 + 16β)-speed 16k2

β3 -competitive for the problem of min-

imizing `k norm flow time with arbitrary speed up curves.

Remark 2.4 The assumption 0 < β ≤ 1
2

that is used in
Theorem 2.3 is not essential in the analysis. Rather, it is to
make our analysis relatively simpler.

3. LIMITATION OF LAPS FOR `K-NORM
SCHEDULING

In this section, we show that for minimizing `k-norm flow
time LAPS performs poor in the non-work-preserving set-
ting. More specifically, we will test LAPS in the schedul-
ing setting with arbitrary speedup curves and broadcast
scheduling setting.

We first show that LAPS can be arbitrarily bad even with
any constant speed given for jobs with arbitrarily speedup
curves. The main idea of constructing the adversarial exam-
ple is to repeatedly request fully sequential jobs to prevent
LAPS from working on parallel jobs. Consequently, LAPS
wastes its processing power procrastinating parallel jobs sub-
stantially; unlike in L1-norm flow time, these delayed jobs
will cause a huge penalty.

Theorem 3.1 Let k ≥ 2 be an integer. For any 0 < β ≤ 1,
the algorithm LAPSβ is not O(1)-competitive even with any
constant speed given for the problem of minimizing `k norm
flow time where jobs have arbitrarily speed up curves.

Proof: Recall that LAPS works on only β fraction of alive
jobs which arrived most recently. Let σ denote the adversar-
ial instance. For simplicity of our argument, suppose that
LAPS is given an integer speed s > 1. Let LAPSs(σ) and
OPT1(σ) denote the kth power of flow time for the given in-
stance σ; the subscript s and 1 are used to denote the speed
LAPS and OPT are given, respectively. Let M > 0 be a
sufficiently large integer which will be defined later. The
instance σ is constructed as follows.

• At time 0, one fully parallelizable job j0 having size M
arrives.

• At each integer time t ∈ [0,M2 − 1], sM sequential
unit-sized jobs arrive. Let Jt denote the set of sequen-
tial jobs that arrive at time t.

Note that all sM jobs in Jt are unsatisfied by LAPS
during [t, t + 1), since they are unit-sized sequential jobs.
Therefore during [0,M2], as long as j0 is alive, it is pro-
cessed at a rate of at most 1

M
, since even in the best case

β = 1, it equally shares the processors with other sM se-
quential jobs. Thus job j0 is not finished until time M2,
which implies that LAPSs(σ) ≥ (M2)k. To the contrary,
let OPT work on only job j0. Then job j0 is finished at
time M , and all sequential jobs are finished in one time

step. Hence, OPT1(σ) ≤ Mk + sM3. It is easy to check
that LAPSs(σ)/OPT1(σ)→∞ as M →∞. �

Using a similar idea, we can show a negative result for
broadcast scheduling.

Theorem 3.2 Let k ≥ 2 be an integer. For any 0 < β ≤ 1,
the algorithm LAPS is not O(1)-competitive even with any
constant speed for the problem of minimizing `k norm flow
time in broadcast scheduling where pages are varying sized.

Proof: Let σ denote the adversarial instance. For simplic-
ity, suppose that LAPS is given an integer speed s > 1. Let
LAPSs(σ) and OPT1(σ) denote the kth power of flow time
for the given instance σ; the subscript s and 1 are used to
denote the speedup LAPS and OPT are given respectively.
Let M be a sufficiently large integer which will be defined
later. The instance σ is defined as follows.

• At time 0, a request r0 for page p having size M , ar-
rives.

• At each integer time t ∈ [0,M2 − 1], sM requests for
page q having size s, arrive.

We first investigate the schedule by LAPS. We observe
that during the interval [0,M2] there are at least sM alive
requests. This is because the new requests which are released
at each integer time t ∈ [0,M2−1] cannot be satisfied within
unit time, since they are asking for pages having size s. As
a result, the request r0 is processed at a rate of at most 1

M
for each unit time slot. Hence request is not satisfied until
time M2 and we obtain LAPS(σ)s ≥M2k.

We now shift our attention to the schedule by OPT. We
let OPT work on r0 during [t, t+ 1) for every odd integer t
until request r0 is finished. Thus, r0 will be satisfied at time
2M . For other empty time slots, we let OPT broadcast
page q sequentially in a round robin fashion. Notice that
this implies that a request for page q is satisfied in at most
4s time steps. Hence we have that OPT1(σ) ≤ (2M)k +
sM3(4s)k. It is easy to see that LAPSs(σ)/OPT1(σ) goes
to infinity as M →∞. �

4. BROADCAST SCHEDULING FOR VARY-
ING SIZED PAGES

In this section, we address the problem of minimizing `k-
norm flow time in broadcast scheduling where pages have
non-uniform sizes. Recently, Bansal et al. [1] gave a very
clean solution for the same problem when k = 1, which is the
inspiration of our algorithm and analysis. The problem is
formally defined as follows: There are n pages stored at the
server and each page p has an integer size σp; it is composed
of σp unit-sized parts, {(p, i) | i ∈ [σp]}. For each integer
time t, the server can transmit one part of a specific page p
during [t − 1, t). Each request r ∈ [m] asking for a page pr
arrives at the server at time ar in online fashion. Request r
is satisfied when it receives all points {(p, i) | i ∈ [σp]} in the
order of (p, 1), (p, 2), ..., (p, σp), but not necessarily contigu-
ously. Let Cr denote the time when the request r is satisfied.
The goal is to give a scheduling of the server which minimize
the `k-norm of the flow times, i.e. (

P
r(Cr−ar)

k)1/k. Again,
like in the previous sections, this is equivalent to minimizing
(
P
r(Cr − ar)

k), and this is the objective function which we
will focus on optimizing.

4.1 The Fractional Algorithm WLAPS for Broad-
cast Scheduling

We use the same algorithm WLAPS with some small
modifications. However, our algorithm is a fractional al-
gorithm in the sense that it is allowed to transmit an in-
finitesimal amount of data for more than one pages during
any arbitrarily short interval. Furthermore, the notion of
when a request is fractionally completed is different from our
original requirement: suppose that our algorithm WLAPS
broadcasts each page p ∈ [n] at rate of yp(t). Then, in the
fractional setting, we say that a request r is completed at
time

Cr := inf{t :

Z t

ar

yp(t)dt ≥ σp}.

In words, Cr is the earliest time when σp units of page p
are broadcast after ar. Notice that we require nothing about
the order of the unit-sized components in this definition of
fractional completion. To fix this issue, we can then apply
the rounding technique of Bansal et al. [1] (Section 5.3) to
convert such a fractional solution to one which is integral
with an additional loss in the competitive ratio.

4.2 Notation
Our notation is similar to that used in earlier sections.

Let Na(t) denote the set of unsatisfied requests at time t,
i.e. all those requests r such that t < Cr. For each request
r ∈ Na(t), let us define its weight at time t to be wr(t) =
k(t − ar)

k−1. Among the set of requests Na(t), let N ′a(t)
denote those requests with the latest arrival times whose
weights sum up to βw(t), where w(t) =

P
r∈Na(t) wr(t);

here we, as did in Section 2.2, rely on the same simplifying
assumption that there exists a set of latest arriving requests
whose total weight is exactly βw(t).

4.3 Algorithm
The algorithm is similar to WLAPS, except that it shares

its processing power based on the requests which are yet un-
satisfied. At any time t, the algorithm WLAPS distributes
its processing power among the requests in N ′a(t), in propor-
tion to their weights at time t. Let xr(t) denote the fraction
of processing power request r receives at time t under the
schedule of WLAPS. Then,

xr(t) := s · wr(t)
βw(t)

, ∀r ∈ N ′a(t)

What this means is the following: whenever the algo-
rithm devotes processing towards a request r, it broadcasts
the page pr at a rate of xr(t) at time t. Note that if
there are several unsatisfied requests for the same page p,
the total rate at which p is broadcast at time t is then
yp(t) =

P
r∈N′a(t),pr=p

xr(t). It is important to note that

although request r is processed at a rate of ypr (t) due to
other requests for the same page pr, the fraction of process-
ing power dedicated to request r is only xr(t). For this rea-
son, sometimes we will say that xr(t) is the share of request
r at time t.

4.4 Analysis
The analysis again employs a potential function based ar-

gument. Let y∗p(t) denote the transmission rate of page p by
OPT at time t. For each request p ∈ [n], let Opt(p, t1, t2)

denote the total amount for page p transmitted by OPT
during [t1, t2], i.e.

Opt(p, t1, t2) :=

Z t2

t1

y∗p(t)dt

For any request r ∈ [m], define the total share for request
r during [t1, t2], denoted by On(r, t1, t2). Formally,

On(r, t1, t2) :=

Z t2

t1

xr(t)dt

Again, notice that On(r, ar, Cr) could be much smaller
than σp if there are multiple pending requests for the same
page pr. We now define a variable zr for each request r
which will be used to define the potential function Φ(t).

zr(t) =
On(r, t,∞) · Opt(pr, ar, t)

σpr

The potential function Φ(t) is then defined as follows.

Φ(t) :=
2

ε

X
r∈Na(t)

zr(t)
X

ar′≤ar,r′∈Na(t)

wr′(t)

We start by investigating the change of the potential func-
tion for all possible events.

Change of the Potential Function

Request Arrival: When a request r arrives at time t,
zr(t) = 0 because the optimal solution has not had a chance
to work on request r yet. It is easy to see that any new
terms which appear are zero, since the requests are indexed
according to their arrival time. Thus ∆Φ = 0.

Request Completion by WLAPS: When a request r is
completed, r is removed from Na(t). As a result, some terms
may disappear from Φ(t). This can only decrease Φ, since
all terms are non-negative in Φ(t). Thus ∆Φ(t) ≤ 0.

Processing by OPT: Fix a sufficiently small interval
[t, t + dt]. Consider any page p ∈ [n]. The amount that
OPT broadcasts for page p is y∗p(t) dt. Let R(t, p) denote
all requests for page p which are not satisfied yet under the
schedule by WLAPS at time t. Formally,

R(t, p) := {r ∈ [m] | pr = p, ar ≤ t < Cr}

The total increase of the potential function is at most

2

ε

X
p

X
r∈R(t,p)

On(r, t,∞) · y∗p(t)dt

σp

X
ar′≤ar,r′∈Na(t)

wr′(t)

Following the argument of [1] (Section 5.2), we can show
that

P
r∈R(t,p) On(r, t,∞) ≤ σp as in [1]. The idea is the

following: all the requests in R(t, p) are yet unsatisfied at
time t, but none of them will be unsatisfied, once a collective
total of σp units of this page are transmitted in the future.
Hence, it must be that total share of processing devoted to
these requests in the future cannot exceed σp.

Now, by combining this observation with the fact thatP
p y
∗
p(t) ≤ 1 (since the optimal offline solution is only given

unit speed), we obtain

∆Φ(t) ≤ 2

ε
dt
X
p

y∗p(t)
X

r∈R(t,p)

On(r, t,∞)

σp

X
ar′≤ar,r′∈Na(t)

wr′(t)

≤ 2

ε
dt
X
p

y∗p(t)
X

r∈R(t,p)

On(r, t,∞)

σp

X
r′∈Na(t)

wr′(t)

≤ 2

ε
∆A(t)

Processing by WLAPS: Consider any request r ∈ N ′a(t)\
No(t). Since OPT has already finished the request r, we

have that Opt(pr,ar,t)
σpr

≥ 1. Thus, zr(t) ≥ On(r, t,∞). More-

over, since r ∈ N ′a(t), On(r, t,∞) decreases at a rate of

xr(t) = swr(t)
βw(t)

. Therefore, zr(t) also decreases at at least the

same rate. Additionally we also have that
P
r′∈Na,ar′≤ar

wr′(t) ≥
(1− β)w(t), again because r ∈ N ′a(t). As a consequence, we
have

d

dt
Φ(t) ≤ −2

ε

X
r∈N′a(t)\No(t)

s wr(t)

βw(t)

X
r′∈Na(t),ar′≤ar

wr′(t)

≤ −2

ε

X
r∈N′a(t)\No(t)

s wr(t)

βw(t)
(1− β)w(t)

= −2s(1− β)

βε

X
r∈N′a(t)\No(t)

wr(t)

≤ −2s(1− β)

βε
(
X

r∈N′a(t)

wr(t)−
X

r∈No(t)

wr(t))

= −2s(1− β)

ε

d

dt
A(t) +

2s(1− β)

βε

d

dt
OPT(t)

Time Elapse: Recall that R(t, p) denotes the set of all re-
quests that are yet unsatisfied for page p under the schedule
of WLAPS at time t.

d

dt
Φ(t) =

2

ε

X
r∈Na(t)

zr(t)
X

r′∈Na(t),ar′≤ar

k(k − 1)(t− ar′)k−2

=
2

ε
k(k − 1)

X
r′∈Na(t)

(t− ar′)k−2
X

r∈Na(t),ar≥ar′

zr(t)

But again, notice that in the inner summation, we have

zr(t) = On(r,t,∞)·Opt(p,ar,t)
σp

≤ On(r,t,∞)·Opt(p,ar′ ,t)
σp

, since ar′ ≤
ar. Thus, we can obtain the following set of inequalities

X
r∈Na(t),ar≥ar′

zr(t) =
X
p

X
r∈R(p,t),ar≥ar′

zr(t)

≤
X

r∈cR(p,t),ar≥ar′

On(r, t,∞) · Opt(p, ar′ , t)

σp

≤ Opt(p, ar′ , t)

The last inequality is because
P
r∈R(p,t) On(r, t,∞) ≤ σp,

following the arguments in [1] (Section 5.2). Moreover, recall
that Opt(p, ar′ , t) is the amount of processing OPT spent
on page p during [ar′ , t]. Since the optimal solution has
one speed, the total amount of all pages transmitted in the
interval [ar′ , t] can be at most (t− ar′). Therefore, we get

d

dt
Φ(t) ≤ 2

ε
k(k − 1)

X
r′∈Na(t)

(t− ar′)k−2(t− ar′)

=
2

ε
(k − 1)

d

dt
A(t)

Final Step of Analysis

We show that d
dt
A(t) + d

dt
Φ(t) ≤ 8k

ε2
d
dt

OPT(t). Let β =
ε
4k

. Recall that s = k + ε. By summing up all the change
(rate) of Φ(t) for all the events, we obtain

d

dt
A(t) +

d

dt
Φ(t) ≤

“
1 +

2k

ε
− 2s(1− β)

ε

” d
dt
A(t) +

2s(1− β)

βε

d

dt
OPT(t)

= (−1

2
+

ε

2k
)
d

dt
A(t) +

16k2

ε2
d

dt
OPT(t)

≤ 16k2

ε2
d

dt
OPT(t)

With the fact that Φ(0) = Φ(∞) = 0, the following theo-
rem easily follows.

Theorem 4.1 For any 0 < ε ≤ 1, there exists a (k +

ε)-speed (4k
ε

)2/k-competitive deterministic online algorithm
which gives a fractional broadcast schedule for minimizing
`k norm flow time.

4.5 Rounding to Integer Broadcast Schedule
Bansal et al. [1] (Section 5.3) show a very elegant deter-

ministic rounding algorithm which takes a 1-speed fractional
broadcast schedule and yields (1+δ)-speed integer broadcast
schedule satisfying the following property: for any request
r, CIr − ar ≤ 3

δ
(Cr − ar) + 5

δ
, where CIr denotes the finish

time of r under the integer broadcast schedule. By apply-
ing this rounding technique to Theorem 4.1, we obtain an
integer broadcast schedule, which completes our analysis.

Theorem 4.2 Let k ≥ 1 be a constant . For any 0 < ε ≤ 1,
there exists a (k + ε)-speed O((1

ε
)1+2/k)-competitive deter-

ministic online algorithm in broadcast scheduling for mini-
mizing `k norm flow time.

5. CONCLUSION
In this paper we showed how to obtain a (2 + ε)-speed

O(1)-competitive algorithm for scheduling jobs with arbi-
trary speed-up curves for the `2 norm of flow. Currently we
do not know whether WLAPS is scalable or not. To find
an scalable algorithm, either showing that WLAPS is scal-
able or finding another algorithm, would be a good problem
worthy of attention.

Acknowledgments: The authors thank Nikhil Bansal for
his helpful discussion about this problem. Sungjin Im and
Benjamin Moseley thank Chandra Chekuri for his support
and encouragement.

6. REFERENCES
[1] Nikhil Bansal, Ravishankar Krishnaswamy, and

Viswanath Nagarajan. Better scalable algorithms for
broadcast scheduling. Technical report, Carnegie
Mellon University, 2009.

[2] Nikhil Bansal and Kirk Pruhs. Server scheduling in
the lp norm: a rising tide lifts all boat. In ACM
Symposium on Theory of Computing, pages 242–250,
2003.

[3] Luca Becchetti and Stefano Leonardi. Nonclairvoyant
scheduling to minimize the total flow time on single
and parallel machines. J. ACM, 51(4):517–539, 2004.

[4] Ho-Leung Chan, Jeff Edmonds, and Kirk Pruhs. Speed
scaling of processes with arbitrary speedup curves on
a multiprocessor. In SPAA, pages 1–10, 2009.

[5] Jeff Edmonds. Scheduling in the dark. Theor. Comput.
Sci., 235(1):109–141, 2000.

[6] Jeff Edmonds, Donald D. Chinn, Tim Brecht, and
Xiaotie Deng. Non-clairvoyant multiprocessor
scheduling of jobs with changing execution
characteristics. J. Scheduling, 6(3):231–250, 2003.

[7] Jeff Edmonds and Kirk Pruhs. Multicast pull
scheduling: When fairness is fine. Algorithmica,
36(3):315–330, 2003.

[8] Jeff Edmonds and Kirk Pruhs. Scalably scheduling
processes with arbitrary speedup curves. In SODA,
pages 685–692, 2009.

[9] Sungjin Im and Benjamin Moseley. An online scalable
algorithm for average flow time in broadcast
scheduling. In ACM-SIAM Symposium on Discrete
Algorithms, page To Appear, 2010.

[10] Bala Kalyanasundaram and Kirk Pruhs. Speed is as
powerful as clairvoyance. J. ACM, 47(4):617–643,
2000.

[11] Bala Kalyanasundaram and Kirk Pruhs. Minimizing
flow time nonclairvoyantly. J. ACM, 50(4):551–567,
2003.

[12] Rajeev Motwani, Steven Phillips, and Eric Torng.
Nonclairvoyant scheduling. Theorertical Computer
Science, 130(1):17–47, 1994.

[13] Kirk Pruhs. Competitive online scheduling for server
systems. SIGMETRICS Performance Evaluation
Review, 34(4):52–58, 2007.

[14] Kirk Pruhs, Jiri Sgall, and Eric Torng. Online
scheduling. In Handbook on Scheduling. CRC Press,
2004.

[15] Julien Robert and Nicolas Schabanel. Non-clairvoyant
batch sets scheduling: Fairness is fair enough. In
European Symposium on Algorithms, pages 741–753,
2007.

[16] Julien Robert and Nicolas Schabanel. Non-clairvoyant
scheduling with precedence constraints. In
ACM-SIAM Symposium on Discrete Algorithms, pages
491–500, 2008.

[17] Abraham Silberschatz and Peter Galvin. Operating
System Concepts, 4th edition. Addison-Wesley, 1994.

	Introduction
	Context, Intuition, and Our Techniques
	The Mistake in the Intuition, and Our Algorithm
	Other Results: Broadcast Scheduling, and Other Norms

	Related Results
	Formal Problem Statement and Notation

	Non-clairvoyant Scheduling with Arbitrary Speedup Curves
	Restricted Instances are Sufficient
	Non-clairvoyant Algorithm WLAPS
	Analysis

	Limitation of LAPS for k-norm Scheduling
	Broadcast Scheduling for Varying Sized Pages
	The Fractional Algorithm WLAPS for Broadcast Scheduling
	Notation
	Algorithm
	Analysis
	Rounding to Integer Broadcast Schedule

	Conclusion
	References

