
Temporal Fairness of Round Robin: Competitive Analysis
for Lk-norms of Flow Time

Sungjin Im
University of California,

Merced
Merced, CA 95343

sim3@ucmerced.edu

Janardhan Kulkarni
Duke University

Durham, NC 27708
kulkarni@cs.duke.edu

Benjamin Moseley
Washington University in St.

Louis.
St. Louis, MO 63130

bmoseley@wustl.edu

ABSTRACT
Fairness is an important criterion considered in scheduling
together with overall job latency. Round Robin (RR) is a
popular scheduling policy that distributes resources to jobs
equally at any point in time guaranteeing instantaneous fair-
ness of jobs. In this paper we give the first analysis of RR
for the `2-norm of flow time and show that it is O(1)-speed
O(1)-competitive on multiple machines. The `2-norm is a
popular scheduling objective that makes a natural balance
between temporal fairness and jobs latency. Prior to our
work, RR has not been analyzed for the `2-norm even in
the single machine setting. Our result establishes that RR
is fair not only instantaneously but also temporarily.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problem]: Se-
quencing and scheduling

General Terms
Algorithms, Theory

Keywords
Online scheduling, Round Robin, Fairness.

1. INTRODUCTION
Most server-client scheduling settings can be characterized

by a set of servers/machines/processors and clients who send
their requests to the servers over time for service. Each
request/job j typically has a processing time/size pj and
an arrival time rj , which is the first time the scheduler is
aware of the existence of the job and can start processing it.
Commonly, each client wants her job j to be completed as
early as possible, i.e. the job j’ s flow time to be minimized.
A job j’s response/flow time is defined as its completion
time Cj minus its arrival time rj , the amount of time the
job waits in the system to be satisfied.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA’15, June 13–15, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3588-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2755573.2755581.

However, when multiple jobs compete for limited resources
to get service earlier, the scheduler must prioritize between
jobs. While there are many scheduling objectives that could
be optimized, the most popular is the objective of min-
imizing the total (or equivalently average) flow time, i.e.∑
j(Cj − rj). Indeed, algorithms have been analyzed in var-

ious setting for the total flow objective in the competitive
analysis framework. An online scheduling policy is said to
be c-competitive for a certain objective if its objective is at
most a c factor more than the optimal scheduler’s objective
for any sequence of jobs. Competitive analysis is of funda-
mental importance since performance guarantees hold even
in the worst scenarios.

Unfortunately, competitive analysis often yields pessimistic
results. For example, it is folklore that Shortest Remaining
Time Processing (SRPT) is optimal, i.e. 1-competitive, in
the single machine setting for the average flow time objec-
tive. However, it is known that no online algorithm is O(1)-
competitive when there are multiple machines [23]. To alle-
viate this pessimistic view, the resource augmentation model
was proposed by [22]. In the resource augmentation model,
if an online algorithm is given s times faster machine(s) and
has an objective at most c times the optimal objective, then
the algorithm is said to be s-speed c-competitive. In gen-
eral, O(1)-speed O(1)-competitiveness is considered to be
an indicator of “reasonably good” scheduling algorithms al-
though (1 + ε)-speed is O(1)-competitiveness for any fixed
ε > 0, a.k.a. scalability, is the most desirable. Resource
augmentation has enabled the development and analysis of
algorithms for various scheduling environments.

Another important scheduling criterion is fairness which
is not captured by objectives focusing on the overall job la-
tency such as the average flow time objective. There are
largely two types of fairness typically considered, instanta-
neous and global. For instantaneous fairness, the main goal
is to distribute resources to jobs evenly at each moment in
time. While the notion of fairness can be somewhat sub-
jective, there is a widely accepted fair algorithm when the
resources are homogeneous/identical, Round Robin. Round
Robin (RR) is an algorithm that achieves fairness by giv-
ing an equal share of the machine(s) to all jobs at all times.
This fairness also coincides with maximizing the minimum
fairness, which is the most widely accepted fairness notion
in many disciplines.

The other type of fairness, which we call temporal fairness,
is measured by global scheduling objectives. As mentioned
before, average flow time only measures the average latency
of job service times, thereby potentially allowing some jobs

to starve for service for an unacceptably long time. How-
ever, Silberschatz, Galvin and Gagne’s classic textbook on
Operating Systems [26] states“A system with reasonable and
predictable response time may be considered more desirable
than a system that is faster on the average, but is highly
variable.” and “... for interactive systems, it is more impor-
tant to minimize the variance in the response time than it is
to minimize the average response time.”

Motivated by temporal fairness, Bansal and Pruhs ana-
lyzed various scheduling policies such as SRPT and Short-
est Job First (SJF) for minimizing the `2-norms of flow time

(more generally `k-norms 1 of flow time, (
∑
j(Cj− rj)

k)1/k)

in an influential paper [4], and showed they are O(1)-speed
O(1)-competitive. Intuitively, the `2-norm of flow time ob-
jective attempts to minimize the variance of flow times of
jobs as well as the average. However, the aforementioned
algorithms do not provide instantaneous fairness since they
may schedule only one job for a long time until the priorities
change due to job processing or other jobs arrival.

A natural looming question is if there is an algorithm
that achieves the instantaneous and global fairness simul-
taneously while optimizing the overall job latency. The RR
algorithm is widely used in situations where fairness is an
important criteria. For example, [8, 17, 25]. However, de-
spite the algorithm being used for its fair properties, it is
not known to be fair globally. It is known that RR is O(1)-
speed O(1)-competitive for average flow time [11,13]. How-
ever, RR has no known guarantees for the `2-norm of flow
time and it has remained an open question if this algorithm,
which is intuitively as fair as possible, is in fact temporally
fair even in the single machine scheduling setting.

1.1 Our Results
In this paper we answer the above question in the affir-

mative by giving the first analysis of the instantaneously
fair algorithm Round Robin (RR) for the `k-norms of flow
time. We show that RR has provable guarantees for tempo-
ral fairness in the multiple identical machines setting. The
algorithm RR has a natural interpretation in this setting: at
any point in time when there are more jobs than machines,
allocate machines to jobs equally. Otherwise, process each
job on one machine exclusively. We show that this algorithm
has the following guarantees.

Theorem 1 The scheduling policy Round Robin (RR) is
2k(1 + 10ε)-speed O(k

ε
)-competitive for the `k-norm of flow

time for any 0 < ε ≤ 1/10 and all k ≥ 1. Furthermore, this
result holds even when there are multiple identical machines.

In particular, our analysis shows that RR is (4 + ε)-speed
O(1)-competitive for the `2-norm of flow time for any fixed
ε > 0. We emphasize that the same algorithm RR is O(1)-
speed O(1)-competitive for both the `1 and `2-norms of flow
time simultaneously. Prior to our work, it was unknown if
RR is O(1)-speed O(1)-competitive for the `2-norm even in
the simplest single machine setting.

We note that it is known that RR is Ω(n1−2εp)-competitive
when given (1 + ε)-speed [4]. Particularly, this means that
RR is not O(1)-competitive with speed less than 3/2 for the
`2-norm objective. On the positive side, our result shows
RR is O(1)-competitive with speed 4 + ε.

1In practice, k ∈ [1, 3] ∪ {∞} are considered.

1.2 Our Techniques and Backstory
Perhaps the reason why the temporal fairness of RR was

not studied before is due to the underlying technical chal-
lenges arising in the analysis. The first analysis of RR for
the `1-norm of flow time was algebraically very involved [11].
This was in a stark contrast to the fact that other simple
scheduling policies such as SRPT and SJF have consider-
ably simpler analysis. This is no surprise considering that
the sharing aspect of RR does not result in an mathemati-
cally easy expression of total flow time unlike other schedul-
ing policies.

A significantly simpler analysis of RR for the `1-norm was
later given by Edmonds and Pruhs [13]. They gave a very el-
egant analysis using a novel potential function, and the anal-
ysis has been extremely useful for other various scheduling
problems; for an overview of potential function based anal-
ysis of online scheduling algorithms, see [21]. However, the
`2-norm is very different from the `1-norm since older jobs
contribute more to the objective than young jobs and the
analysis of RR for the `1-norm does not extend to the `2-
norm. Another possible analysis approach to study RR for
the `2-norm is linear programming and dual fitting, which
was recently introduced for scheduling analysis [1, 16].

A potential issue with using potential functions or dual
fitting is that the analysis seems to require a weighted ver-
sion of RR. Let’s focus on the total square of flow times of
jobs, i.e.

∑
j(Cj − rj)

2 by peeling out the square root of the
`2-norm objective. As mentioned before, when jobs arrive
over time, RR does not admit a closed form of mathemati-
cal expression of the square objective. Hence an alternative
approach is to focus on the instantaneous increase of the
square objective in the RR’s schedule at each time. At any
point in time each alive job j contributes by twice the job’s
current age to the instantaneous increase in the objective.
Here if jobs are given machines in proportion to their ages (a
‘weighted’ version of RR), both the potential function and
dual fitting approaches go through relatively easily. How-
ever, the analysis of RR is significantly more challenging
since it is oblivious to jobs ages.

Even algorithmically, it was not clear if RR was a right
algorithm for the `2-norm of flow time. In fact, in other
scheduling environments such as the arbitrary speed-up curves
and broadcast settings, RR was shown not to be O(1)-speed
O(1)-competitive [15]. However, the weighted variant of RR
that distributes machines to jobs in proportion to their ages
was shown to be O(1)-speed O(1)-competitive for the `2-
norm [12]. These results suggest that there was no strong
reason to believe RR would perform well in the standard
scheduling setting for the `2-norm.

Our analysis is based on linear programming and dual
fitting. The challenge is how to set up dual variables. While
our analysis inspired by the recent work [18,19], our setting
of dual variables is very different from the previous work.
Roughly speaking, there are two types of dual variables that
one is required to set, how much each job is responsible for
the objective, and how much a job contributes to each time t.
A naive extension of the previous work fails. In particular, as
alluded to before, we had to add “global” quantities to both
variables not only just the instantaneous quantities such as
jobs ages. This will be further discussed in Section 3.2.

1.3 Related Work
As mentioned before, it is well known that SRPT is opti-

mal for the `1-norm of flow time in the single machine set-
ting. The algorithms SJF and Shortest Elapsed Time First
(SETF) are known to be O(1+ε)-speed O(1)-competitive [7,
22]. The same objective was extensively studied in the mul-
tiple machines setting [2, 3, 6, 9, 10, 14, 23, 27]. In particular,
SRPT and SJF both are O(1 + ε)-speed O(1)-competitive
on multiple machines [14, 27]. However, only a “fractional”
version of SETF was shown to be scalable [5] on multiple
machines.

For `k-norms of flow time, [4] showed various algorithm are
scalable ((1 + ε)-speed O(1)-competitive), including SRPT,
SJF, and SETF. It is known that SJF and SRPT are scal-
able for `k-norms of flow time even on multiple machines
[14,27].

In [13], RR and its extension were analyzed. The setting
was the arbitrary speed-up curves setting where each job
can be sped up by being assigned more machines, and can
have a different degree of parallelizability. In the closely re-
lated broadcast scheduling setting, jobs asking for the same
data can be processed simultaneously. As mentioned, while
RR is O(1)-speed O(1)-competitive for the `1-norm in both
settings [12], it is not O(1)-competitive even with any O(1)-
speed for the `2-norm [15].

For recent results for heterogeneous machines, see [1, 19,
20]. For a nice (but slightly outdated) survey on online
scheduling, we refer the reader to [24].

2. PROBLEM DEFINITION AND NOTATION
In this section, we formally define the problem along with

notation which will be used throughout this paper. There
are m identical machines available. Each job j arrives at
time rj , and this is the first time when the online scheduler
learns about job j. In a feasible schedule, each machine
can schedule at most one job at each moment in time. Let
A(t) denote the set of jobs alive at time t in the schedule
of the online algorithm we consider. A feasible schedule can
alternatively be characterized by {mj(t)}j∈A(t) at each time
t such that

∑
jmj(t) ≤ 1, and mj(t) ∈ [0, 1] for all jobs

j and times t ≥ 0. That is, any {mj(t)} satisfying these
constraints can be easily translated into a feasible schedule
that fits in the former definition, and vice versa. It is easy
to see that in the RR’s schedule,

mj(t) = min{1,m/nt},

where nt := |A(t)| is the number of jobs alive at time t.
Job j completes at time t when it gets pj amount of total

processing since its arrival. Note that RR does not need
to know job j’s size, pj , until its completion, and such an
algorithm is called non-clairvoyant. In the `k norms of flow

time, the goal is to minimize k

√∑
j∈[n](Cj − rj)k.

We refine A(t) by adding an extra constraint to refer to
jobs that are alive at time t and satisfy the constraint. For
example, A(t,≤ rj) refers to jobs alive at time t and ar-
rive before job j. For notational simplicity, we may use RR
to denote RR’s objective. Likewise, OPT may denote the
optimal scheduler’s objective, not only the scheduling pol-
icy itself. The flow time of job j in RR’s schedule will be
denoted Fj .

3. ANALYSIS

3.1 LP relaxation
In this section we will prove Theorem 1. We assume

throughout the analysis that RR is given η := 2k(1 + 10ε)-
speed where 0 < ε ≤ 1/10. Note that every job j ∈ A(t) is
processed at a rate of η ·min{1,m/nt} in RR’s schedule at
each time t where nt := |A(t)| denotes the number of jobs
alive at time t. As mentioned earlier, our analysis will be
based on dual fitting which was first used by [1,16] in online
scheduling literature. It will be more convenient to compare
RR’s kth power of flow time to the analogous quantity of
the optimal scheduler – the competitive analysis of `k norms
of flow time will immediately follow by taking the kth root
on the kth power of flow time objective.

A linear programming relaxation of the problem LPprimal

is described as follows. The variables xjt denote the rate
at which job j is processed at time t. The first constraint
says that every job must be completely processed. The sec-
ond constraint says the total rate at which all jobs are pro-
cessed at each time t is upper bounded by m, the number
of machines available. (Alternatively, one can think of m
machines as one super machine with speed m.) In this LP
relaxation, a job is allowed to be processed simultaneously
across different machines, but we assume a feasible algo-
rithm can schedule a job on at most one machine at each
point in time. In the LP, let γ = k(k/ε)k−1 be a constant
that depends on ε and k. For technical reasons in the dual
fitting analysis, we add a factor γ to the objective. We note
that this simply increases the value of the primal by a factor
γ.

Min
∑
j

∑
t≥rj

γ

(
(t− rj)k

pj
+
pkj
pj

)
· xjt (LPprimal)

∑
t≥rj

xjt ≥ pj ∀j∑
j : t≥rj

xjt ≤ m ∀t

xjt ≥ 0 ∀j, t : t ≥ rj
Observe that the above LP lower bounds the optimal flow

time of a feasible schedule within factor 2γ. This is becuase
t− rj ≤ Fj if job j is alive at time t, and job j’s flow time is
at least pj in any feasible schedule. Next we write the dual
of LPprimal.

Max
∑
j

αj −
∑
t

βt (LPdual)

αj
pj
− βt
m

≤ γ

(
(t− rj)k

pj
+
pkj
pj

)
∀j, t : t ≥ rj

αj ≥ 0 ∀j
βt ≥ 0 ∀t

The dual has a variable αj for every job j corresponding
to the first constraint in the primal and a variable βt corre-
sponding to the second constraint. We will show that there
is a setting of dual variables such that objective function of
the dual is at least Ω(ε) times RR’s kth power of flow time.
This will imply that RR’s kth power of flow time is at most

O(1/ε) times the dual objective, hence O(γ/ε) times the op-
timal scheduler’s kth power of flow time. By taking the kth
root, we will have Theorem 1.

3.2 Setting of Dual Variables
Let To := {t | |A(t)| ≥ m} denote the set of overloaded

times where all m machines are busy in RR’s schedule (in
other words, total number jobs available for processing is
at least m), and Tu denote the other times which will be
referred to as underloaded times. We set αj as follows:

αj =

 ∑
t′∈[rj ,Cj]∩To

∑
j′∈A(t′,≤rj)

k(t′ − rj′)k−1

nt′


+

 ∑
t′∈[rj ,Cj]∩Tu

k(t− rj)k−1


− εF kj ∀j

Recall that A(t′,≤ rj) denotes the set of jobs that are alive
at time t and have arrived no later than job j (including job
j itself).

We continue to set βt as follows. Below, for a fixed time
t let 1(t ∈ [rj , Cj + δFj]) be 1 if t ∈ [rj , Cj + δFj]) and 0
otherwise; δ will be set to ε later.

βjt = (1/2− 3ε) · 1(t ∈ [rj , Cj + δFj]) · F k−1
j ∀j, t

βt =
∑
j

βjt ∀t

Note that a job j can contribute to βt not only during its
lifespan [rj , Cj] but also even after it gets completed, for
δFj = δ(Cj − rj) time steps. The amount j adds to βt at
time t (if it does) is F k−1

j , the (k − 1)th power of j’s flow
time.

We briefly discuss how our setting of dual variables differ-
entiates from the previous work, starting with dual variables
αj . We had to distinguish between overloaded and under-
loaded time steps. This is because RR behaves on m ma-
chines as it does on 1 machine with speed m when machines
are overloaded, and otherwise, it schedules each job on a sep-
arate machine exclusively. The summation over overloaded
times is inspired by the work [13, 19] – in particular, this
amortized accounting is exactly the same when k = 1. How-
ever, we had to subtract εF kj from αj . Hence while the first
two terms in αj are derived from RR’s instantaneous status,
the last term is a global term which is derived from j’s final
flow time. Also we had to make job j contribute to βj for
a while even after it completes. This helps compare job j
to job j′ that is considered in αj , and turns out to be very
useful for our analysis.

3.3 Bounding The Dual Objective
We start with showing that the dual objective for the

above setting of αj and βt is Ω(ε) times RR’s kth power
of flow time. Throughout the analysis we will use the fact
that for any job j ∈ A(t) it is the case that (t − rj) ≤ Fj
because the job must be alive at time t to be in A(t).

Lemma 1
∑
j αj ≥ (1

2
− ε)RR.

Proof.∑
j

αj =
∑
t′∈To

∑
j∈A(t′)

k(t′ − rj)k−1 |A(t′,≥ rj)|
nt′

+
∑
t′∈Tu

∑
j′∈A(t′)

k(t′ − rj′)k−1 − εRR

≥ 1

2

∑
t′∈To

∑
j∈A(t′)

k(t′ − rj)k−1

+
∑
t′∈Tu

∑
j′∈A(t′)

k(t′ − rj′)k−1 − εRR

≥ (
1

2
− ε)RR

Since verifying the above sequence of equations is straight-
forward for underloaded time steps, we will focus on over-
loaded time steps. The first equality follows by observing

that the term
k(t′−rj′)

k−1

nt′
due to job j′ is counted by all

jobs in A(t′) that arrive no earlier than job j′. The second
inequality holds for the following reason. Fix time t′ and
define j’s rank as |A(t′,≥ rj)|, denoted as πj . Note that the
earliest arriving job in A(t′) has rank nt′ and the latest arriv-
ing job has rank 1. Also observe k(t− ri)k−1 ≥ k(t− rj)k−1

if and only if πi ≥ πj since earlier arriving jobs have higher
ranks. By pairing two jobs i and j such that πi+πj = n+1,
we have

(k(t′ − ri)k−1πi + k(t′ − rj)k−1πj)/nt′

≥ nt′ + 1

2nt′
(k(t′ − ri)k−1 + k(t′ − rj)k−1)

≥ 1

2
(k(t′ − ri)k−1 + k(t′ − rj)k−1)

Summing over all pairs yields the inequality.

Lemma 2
∑
t βt ≤ (1

2
− 2ε) ·RR.

Proof. From the definiton of βt, we derive,∑
t

βt =
∑
j,t

βjt =
∑
j

(1 + δ)Fj · (1/2− 3ε)F k−1
j

= (1 + δ)(1/2− 3ε)
∑
j

F kj

≤ (1/2− 2ε) ·RR

The last inequality follows from the fact that 0 < δ = ε ≤
1/10.

The previous two lemmas show the objective for our set-
ting of the dual variables is Ω(ε) times RR’s kth power flow
time. Thus, if we show that the dual constraints are sat-
isfied, this will show that Ω(ε) times RR’s kth power flow
time is less than the optimal dual objective. Knowing that
the dual objective is at most 2γ times OPT’s kth power flow
time, we can derive Theorem 1.

3.4 Verifying The Dual Constraints
It now remains to show the dual constraints are satisfied.

Clearly the last two sets of constraints are satisfied. Con-
sider the first set of constraints for some fixed job j and time
t ≥ rj . Define B(t′) := {j′ | t′ ∈ [rj′ , Cj′ + δFj′]} as the set
of jobs j′ that contribute to βt′ by a positive quantity. Note

that A(t′) ⊆ B(t′), but not necessarily A(t′) = B(t′). First
we bound αj/pj .

αj
pj

=
1

pj

 ∑
t′∈[rj ,Cj]∩Tu

k(t− rj)k−1

− 1

pj
εF kj (1)

+
1

pj

 ∑
t′∈[rj ,Cj]∩To

∑
j′∈A(t′,≤rj)

k(t′ − rj′)k−1

nt′

 (2)

It is easy to upper bound Equation (1) that concerns un-
derloaded times:

1

pj

 ∑
t′∈[rj ,Cj]∩Tu

k(t− rj)k−1

− 1

pj
εF kj

≤ 1

pj

pj
η
· k · F k−1

j − 1

pj
εF kj

≤ 1

pj

(
ε · F kj + k

(
k

ε

)k−1

· pkj

)
− 1

pj
εF kj

≤
γ pkj
pj

(3)

The first inequality holds due to the fact that job j can
be processed by at most pj and, at each underloaded time,
all alive jobs get processed at a rate of η ≥ 1. The last
inequality follows considering whether k · pj ≤ εFj or not.

We shift our attention to upper bounding Equation (2).

(2) =
1

pj

 ∑
t′∈[rj ,Cj]∩To

∑
j′∈A(t′,≤rj)\B(t)

k(t′ − rj′)k−1

nt′


(4)

+
1

pj

 ∑
t′∈[rj ,Cj]∩To

∑
j′∈A(t′,≤rj)∩B(t)

k(t′ − rj′)k−1

nt′


(5)

Note that the two Equations (4) and (5) come from jobs
not in B(t) and jobs in B(t), respectively; it is important to
note that this partition is based on B(t), not B(t′).

We first upper bound Equation (4).

Lemma 3 For all j and t ≥ rj, we have,

1

pj

∑
t′∈[rj ,Cj]∩To

∑
j′∈A(t′,≤rj)\B(t)

k(t′ − rj′)k−1

nt′
≤ γ(t− rj)k

pj
.

Proof. Note that any job j′ considered in the summation
arrives before job j, is alive at time t′, completes before time
t, and is not in B(t). Hence we have rj′ ≤ rj ≤ Cj′ ≤ Cj′ +
δFj′ ≤ t, which implies that δFj′ ≤ (t−rj). This also implies
that we can further restrict t′ to the range [rj ,min{t, Cj}]
because no job j′ contributes to the second summation at
time t or later. Thus, we derive,

(LHS)

≤ 1

pj

∑
t′∈[rj ,min{t,Cj}]∩To

∑
j′∈A(t′,≤rj)\B(t)

k(t′ − rj′)k−1

nt′

≤ 1

pj

∑
t′∈[rj ,min{t,Cj}]∩To

∑
j′∈A(t′,≤rj)\B(t)

kF k−1
j′

nt′

≤ 1

pj

∑
t′∈[rj ,min{t,Cj}]∩To

∑
j′∈A(t′,≤rj)\B(t)

k(1/δ)k−1(t− rj)k−1

nt′

=
1

pj
· k(1/δ)k−1(t− rj)k−1

·
∑

t′∈[rj ,min{t,Cj}]∩To

∑
j′∈A(t′,≤rj)\B(t)

1

nt′

≤ 1

pj
· k(1/δ)k−1(t− rj)k

≤ 1

pj
γ(t− rj)k

The second to last inequality follows from the fact that
|A(t′,≤ rj)| ≤ |A′(t)| ≤ nt′ .

We now upper bound Equation (5).

Lemma 4 For all jobs j and t ≥ rj, we have,

1

pj

 ∑
t′∈[rj ,Cj]∩To

∑
j′∈A(t′,≤rj)∩B(t)

k(t′ − rj′)k−1

nt′

 ≤ βt
m
.

Proof. Consider,

(LHS) ≤ 1

pj

∑
t′∈[rj ,Cj]∩To

∑
j′∈A(t′)∩B(t)

kF k−1
j′

nt′

≤ 1

pj

∑
j′∈B(t)

∑
t′∈[rj′ ,Cj′]∩[rj ,Cj]∩To

kF k−1
j′

nt′

≤ 1

ηm

∑
j′∈B(t)

kF k−1
j′ · 1

pj

∑
t′∈[rj′ ,Cj′]∩[rj ,Cj]∩To

ηm

nt′

≤ 1

ηm

∑
j′∈B(t)

kF k−1
j′

=
k

(1/2− 3ε)ηm

∑
j′∈B(t)

(1/2− 3ε)F k−1
j′

=
k

(1/2− 3ε)η

βt
m

≤ βt
m

[Since η := 2k(1 + 10ε)]

The second inequality follows from the observation that
job j′ adds kF k−1

j′ /nt′ to the summation only when jobs j

and j′ are both alive, and the time step is overloaded. The
penultimate inequality follows since while both jobs j and
j′ are alive, they are processed at an equal rate of ηm/nt′
at each overloaded time t, hence the second summation is
upper bounded by job j’s size.

We are now ready to complete the analysis. By combining
the previous equations, we have

αj
pj
≤ 1

pj

 ∑
t′∈[rj ,Cj]∩Tu

k(t− rj)k−1

− 1

pj
εF kj

+
1

pj

 ∑
t′∈[rj ,Cj]∩To

∑
j′∈A(t′,≤rj)

k(t′ − rj′)k−1

nt′



≤
γ pkj
pj

+
γ(t− rj)k

pj
+
βt
m
,

proving that the dual constraints are satisfied, as desired.

Acknowledgements. The first author’s research was sup-
ported in part by NSF grant CCF-1409130. Kulkarni’s re-
search was supported by NSF awards CCF-0745761, CCF-
1008065, and CCF-1348696.

4. REFERENCES
[1] S. Anand, Naveen Garg, and Amit Kumar. Resource

augmentation for weighted flow-time explained by
dual fitting. In SODA, pages 1228–1241, 2012.

[2] Nir Avrahami and Yossi Azar. Minimizing total flow
time and total completion time with immediate
dispatching. In SPAA ’03: Proceedings of the fifteenth
annual ACM symposium on Parallel algorithms and
architectures, pages 11–18, 2003.

[3] Baruch Awerbuch, Yossi Azar, Stefano Leonardi, and
Oded Regev. Minimizing the flow time without
migration. SIAM J. Comput., 31(5):1370–1382, 2002.

[4] Nikhil Bansal and Kirk Pruhs. Server scheduling to
balance priorities, fairness, and average quality of
service. SIAM Journal on Computing,
39(7):3311–3335, 2010.

[5] Neal Barcelo, Sungjin Im, Benjamin Moseley, and
Kirk Pruhs. Shortest-elapsed-time-first on a
multiprocessor. In Design and Analysis of Algorithms
- First Mediterranean Conference on Algorithms,
MedAlg 2012, Kibbutz Ein Gedi, Israel, December 3-5,
2012. Proceedings, pages 82–92, 2012.

[6] Luca Becchetti and Stefano Leonardi. Nonclairvoyant
scheduling to minimize the total flow time on single
and parallel machines. J. ACM, 51(4):517–539, 2004.

[7] Luca Becchetti, Stefano Leonardi, Alberto
Marchetti-Spaccamela, and Kirk Pruhs. Online
weighted flow time and deadline scheduling. Journal of
Discrete Algorithms, 4(3):339–352, 2006.

[8] Hemant M. Chaskar and Upamanyu Madhow. Fair
scheduling with tunable latency: a round-robin
approach. IEEE/ACM Trans. Netw., 11(4):592–601,
2003.

[9] Chandra Chekuri, Ashish Goel, Sanjeev Khanna, and
Amit Kumar. Multi-processor scheduling to minimize
flow time with epsilon resource augmentation. In
STOC, pages 363–372, 2004.

[10] Chandra Chekuri, Sanjeev Khanna, and An Zhu.
Algorithms for minimizing weighted flow time. In
STOC, pages 84–93, 2001.

[11] Jeff Edmonds. Scheduling in the dark. Theor. Comput.
Sci., 235(1):109–141, 2000.

[12] Jeff Edmonds, Sungjin Im, and Benjamin Moseley.
Online scalable scheduling for the `k-norms of flow
time without conservation of work. In A, 2011.

[13] Jeff Edmonds and Kirk Pruhs. Scalably scheduling
processes with arbitrary speedup curves. In
ACM-SIAM Symposium on Discrete Algorithms, pages
685–692, 2009.

[14] Kyle Fox and Benjamin Moseley. Online scheduling on
identical machines using srpt. In SODA, pages
120–128, 2011.

[15] Anupam Gupta, Sungjin Im, Ravishankar
Krishnaswamy, Benjamin Moseley, and Kirk Pruhs.
Scheduling jobs with varying parallelizability to
reduce variance. In Syposium on Parallel Algorithms
and Architectures, pages 11–20, 2010.

[16] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk
Pruhs. Online primal-dual for non-linear optimization
with applications to speed scaling. In WAOA, 2012.

[17] Ellen L. Hahne. Round-robin scheduling for max-min
fairness in data networks. IEEE Journal on Selected
Areas in Communications, 9(7):1024–1039, 1991.

[18] Sungjin Im, Janardhan Kulkarni, and Kamesh
Munagala. Competitive algorithms from competitive
equilibria: non-clairvoyant scheduling under
polyhedral constraints. In Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, May
31 - June 03, 2014, pages 313–322, 2014.

[19] Sungjin Im, Janardhan Kulkarni, Kamesh Munagala,
and Kirk Pruhs. Selfishmigrate: A scalable algorithm
for non-clairvoyantly scheduling heterogeneous
processors. In 55th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2014,
Philadelphia, PA, USA, October 18-21, 2014, pages
531–540, 2014.

[20] Sungjin Im and Benjamin Moseley. Online scalable
algorithm for minimizing `k-norms of weighted flow
time on unrelated machines. In SODA ’11: Proceedings
of the Twenty-first Annual ACM -SIAM Symposium
on Discrete Algorithms, pages 95–108, 2011.

[21] Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A
tutorial on amortized local competitiveness in online
scheduling. SIGACT News, 42:83–97, June 2011.

[22] Bala Kalyanasundaram and Kirk Pruhs. Speed is as
powerful as clairvoyance. Journal of the ACM,
47(4):617–643, 2000.

[23] Stefano Leonardi and Danny Raz. Approximating
total flow time on parallel machines. J. Comput. Syst.
Sci., 73(6):875–891, 2007.

[24] Kirk Pruhs, Jiri Sgall, and Eric Torng. Handbook of
Scheduling: Algorithms, Models, and Performance
Analysis, chapter Online Scheduling. 2004.

[25] M. Shreedhar and George Varghese. Efficient fair
queueing using deficit round-robin. pages 375–385,
1996.

[26] Abraham Silberschatz, Peter B Galvin, and Greg
Gagne. Operating system concepts, volume 8. Wiley,
2013.

[27] Eric Torng and Jason McCullough. Srpt optimally
utilizes faster machines to minimize flow time. ACM
Transactions on Algorithms, 5(1), 2008.

