
Algorithms for Massive Data Science Lecture date: April 1, 2019
Instructor: Ben Moseley Scribe: Violet Chen

Sampling is widely used to quickly measure certain quantities of large data sets. A naive
sampling may work for some simple problems. For example, if we seek to estimate an approximate
median of the input, taking the median of a small sample will be a good approximate measure of
the true median with a high probability. However, for many problems, some data points may affect
the optimal solution a lot, hence it may not be a good idea to construct a solution only based on
a sample impacted by these data points. In this section, we will give a powerful recipe which we
term Sample and Prune.

1 Basic setup

We begin with defining Sample and Prune in a general sense. Sample and Prune can be applied
to problems which admit a simple greedy algorithm. Given a universe U of elements as input and
some objective function, let G be the greedy algorithm or a close approximation algorithm. We
given the following semi-formal definition of Sample-Prune algorithms.

1. Initialize the sample S = ∅.

2. Sample each element in U independently with probability M/|U | and add it to S, where M
is the memory size.

3. Construct a tester T (S) from the output of the algorithm G on the sample S: typically, the
tester rejects element e if and only if running algorithm G on S and S

⋃
{e} would return the

same output.

4. Remove from U every element e that fails the tester T (S).

5. Recurse until U becomes small enough, i.e. |U | < M .

6. Solve the problem on the small instance, S ∪ U ; typically we run G on S ∪ U .

The above algorithm uses the observation that S ∪ U is a good sketch on the input in all
iterations: the optimal solution on the reduced input S ∪U is a good approximation to the original
input. As mentioned before, in each iteration, we sample a subset of the input which is small enough
to fit into a single machine’s memory. Then, we broadcast the sample to all machines where each
element in the current universe is tested based on the sample. Intuitively, each element is discarded
if it is deemed useless for improving the solution when added to the sample S.

A natural way of constructing such a tester, although not unique, is to run the greedy algorithm
G on S

⋃
{e}. If the greedy algorithm’s solution remains the same compared to running on the input

S, the element is intuitively useless, thus discarded. The idea is that a large fraction of the elements
are discarded in each iteration. Then, we repeat this process until the remaining universe becomes
sufficiently small. Once we have a small universe, we put the sample and the small number of
elements left in the universe into a single machine, and solve the instance of reduced size.

The analysis of this algorithm consists of two key steps.

• (i) Effectiveness of Pruning: Let R be the final pruned universe. We need to prove that R is
small enough to fit in a single machine’s memory.

• (ii) Approximation guarantee: we also need to show that solving the reduced instance S ∪R
leads to a good solution, either optimal or approximate.

2 Warm up problem: choose top k elements

We now apply Sample and Prune algorithm to solve the problem of choosing largest k elements
from a given universe of elements.

Algorithm 1 Choose Top k Elements with Sample and Prune

Input: A universe U of n elements (or numbers), greedy algorithm G(S) which returns the top k
elements from set S. Assume each machine has memory size

√
n.

Output: k largest from input elements.
1: Partition n elements into m partitions Ui such that each Ui fits on one machine.
2: Each machine samples elements in Ui independently with uniform probability. Send all samples

to one machine, denote the final sample as S.
3: Let B = G(S) be the top k numbers from sample S.
4: On each machine, discard (or prune) elements smaller than the smallest element in B. Let R

be remaining elements after pruning. (This step is constructing a tester: discard element e if
G(S

⋃
{e}) = G(S) = B.)

5: Send all elements of R to one machine, run G(R) and return the output set.

Now we show the two key analysis steps. Key step (ii) is straightforward: G(S
⋃
R) outputs

the top k elements from U . Key step (i) can be shown with the following lemma.

Lemma 1 (Effective pruning) |R| = O(k
√
n) with high probability.

Proof: If |R| ≥ 10k
√
n log n, we say this is a bad event. Once B is fixed, R elements are also

deterministically fixed. Let X(B′) denote a fixed bad event, where B′ is computed from our sample.
Let R(B′) denote the remaining elements if we construct a tester with B = B′ in step 4 of algorithm.

We observe that if any element in R(B′) is included in the sample S, then B computed in step
3 of the algorithm must satisfy B 6= B′, thus the bad event X(B′) does not occur. Therefore,

Pr[X(B′)] ≤ Pr[e /∈ S, ∀e ∈ R(B′)] ≤ (1− 1

n1/2
)|R(B′)|

≤ (1− 1

n1/2
)10kn

1/2 logn ≤ exp(−10k log n) ≤ n−10k

Since there are at most nk possible realizations of B, by union bound over all such bad realizations:

Pr[X(B)] ≤
(
n

k

)
n−10k ≤ n−9k

Since bad event happens with very small probability, we can conclude that |R| = O(k
√
n) w.h.p.

2

3 k-center clustering

Now we apply Sample and Prune to k-center clustering. We begin with reviewing a sequential
greedy approximation algorithm for k-center clustering, then introduce a distributed approximation
algorithm.

3.1 Greedy algorithm

Algorithm 2 Greedy k-center Clustering G(U)

Input: A universe U of n points in a metric space, d(u, v) as distance between two points u and
v, d(u, V ′) := minv∈V ′ d(u, v′)

Output: k points/centers A such that A attains minA′⊆U :|A′|≤k
∑

u∈U d(u,A′)
Suppose optimal objective value OPT is known.

1: Set A = ∅.
2: Add an arbitrary point in U to A, and remove all points from U that are within distance 2OPT

from A.
3: Repeat this until U = ∅ and output A as the final solution.

Theorem 2 G(U) is a 2-approximation of optimal k-center clustering.

Proof: Suppose A is the output from G(U). If |A| ≤ k, then every point in U is within distance
2OPT from A by construction in algorithm.

For sake of contradiction, assume |A| > k, then there exist k + 1 points with distance greater
than 2OPT from each other. By Pigeon Hole principle, 2 of these points are assigned the same
center in optimal clustering (corresponding to OPT), say u,w are two such points assigned to
center vc. Then d(u, vc) ≤ OPT, d(w, vc) ≤ OPT , but d(u,w) > 2OPT , which violates triangle
inequality. 2

3.2 Distributed algorithm

The above greedy algorithm is very sequential in nature and is hard to adapt to the distributed
setting. To give a distributed algorithm with sample-prune, the key question to answer is: after
taking a sample S, what is the most natural tester one could build from the greedy algorithm?

Let G(S) denote the output G gives on the sampled input S. One pruning option is to discard
each point u from U if the point is too close from G(S): within distance 2OPT from G(S).

Algorithm 3 Distributed k-center Clustering with Sample and Prune

Input: A universe U of n points in a metric space, distance function d(u, v), d(u, V ′) :=
minv∈V ′ d(u, v′), machines with individual machine memory Θ̃(k

√
n)

Output: k points/centers A such that A attains minA′⊆U :|A′|≤k
∑

u∈U d(u,A′)
Suppose optimal objective value OPT is known.

1: Sample each point of U with probability 1/
√
n independently to obtain sample S.

2: Compute a set A = G(S).
3: Partition n points into m partitions Ui such that Ui

⋃
X fits on one machine. Place Ui

⋃
A on

machines.
4: On each machine, discard elements within 2OPT of the points in A. Let R be remaining

elements after pruning.
5: Send all elements of R to one machine, run G(R) and return the output set.

For analysis of the distributed algorithm, we show the following:
(i) Most of the points in U do not pass the tester and are discarded.
(ii) The algorithm is a 2-approximation.

Lemma 3 |R| = O(kn1/2 log n) w.h.p.

Proof: If |A| = k, then A found in step 2 of algorithm gives a 2-approximation. For the following,
we consider the case |A| < k.

If |R| ≥ 10k
√
n log n, we say this is a bad event. Note that sample S determines A(S) := G(S),

which in turn determines R.
For each possible realization A′ of A, we let R(A′) denote the resulting R, that is, R(A′) :=

{u ∈ U | d(u,A′) > 2OPT}. Observe that the bad event with A = A′ can happen only when no
points in R(A′) are included in the sample S since otherwise at least one of those points would
have been added to the set A, contradicting to the condition A = A′. Therefore,

Pr[|R| ≥ 10kn1/2 log n] ≤ Pr
[⋃
|A′|<k

(
A = A′

)
∧
(
|R(A′)| ≥ 10kn1/2 log n

)
∧
(
R(A′) ∩ S = ∅

)]
≤

∑
|A′|<k

Pr
[(
|R(A′)| ≥ 10kn1/2 log n

)
∧
(
R(A′) ∩ S = ∅

)]
≤ nk · (1− 1

n1/2
)10kn

1/2 logn ≤ nk · exp(−10k log n) ≤ n−9k

The second inequality is an easy consequence of union bound over all possible realizations of
A. The third inequality follows from the fact that each point in R(A′) is sampled to be in S
independently with probability 1/

√
n and because |A| < k. 2

We now show (ii).

Lemma 4 The algorithm returns a 2-approximate solution.

Proof: The key observation is that the remaining points R are exactly the same as those the greedy
algorithm has left over after choosing A as centers. Thus, we get a 2-approximation by running G
on R (or equivalently running G on S

⋃
R). 2

	Basic setup
	Warm up problem: choose top k elements
	k-center clustering
	Greedy algorithm
	Distributed algorithm

