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1 Introduction

Recall the generic partitioning approach for developing distributed algorithms:

• Partition the input evenly across all machines.

• Each machine constructs a coreset given its partition, and sends that coreset to a designated
machine.

• The designated machine uses all the coresets to construct the final solution.

In this lecture we will apply this approach to the k-centers problem and the triangle counting
problem.

2 k-Centers Clustering

Clustering is a data analysis technique in which we want to group data points together that are
similar. We are given n data points along with some notion of similarity between data points. The
goal of clustering is to the divide the data into k clusters such that points in the same cluster are
similar. The way we will measure similarity is by defining an objective function. In this section,
we will consider the k-centers objective function.

The formal definition of k-centers clustering is as follows:

Definition 1 (k-Centers Clustering) As input we are given a set U of n points, a parameter
k ∈ N (the number of centers to choose), and a distance metric d on U .

The output is a set of k centers, say C ⊂ U , where |C| = k. We wish to output a set of k
centers minimizing max

u∈U
dC(u), where dC(u) := min

c∈C
d(u, c).

2.1 Sequential Approximation Algorithm for k-Centers

Before considering the distributed setting, it will be useful to develop a sequential algorithm for
k-centers. Consider the following greedy algorithm:

Algorithm 1 Sequential k-center

GreedyKC(U, k)

1: C = ∅
2: Add any point u ∈ U to C
3: while |C| < k do
4: u = argmaxv∈U dC(v)
5: C = C ∪ {u}
6: end while
7: Output C



Lemma 1 GreedyKC is a 2-approximation for the k-center problem.

Proof: Let C∗ = {c∗1, . . . c∗k} be the centers chosen by the optimal solution achieving objective
value r∗.

Let V ∗i denote the points in c∗i ’s cluster in the optimal solution (so V ∗i is the set of points u ∈ U
such that d(u,C∗) = d(u, c∗i ).)

We will use the following fact for the analysis of the algorithm. Fix some V ∗i . For any u, v ∈ V ∗i ,
by the triangle inequality, we have:

d(u, v) ≤ d(u, c∗i ) + d(v, c∗i ) ≤ 2r∗

Now we consider two cases. Suppose C has one point in each V ∗i , say ci. Then for each u ∈ V ∗i ,
d(u,C) ≤ d(u, ci) ≤ 2r∗, because u, ci ∈ V ∗i . This holds for all V ∗i . Because V ∗1 , . . . , V

∗
k form a

partition of U , we have a 2-approximation.
Otherwise, there exists some i such that C has two points, say u, v ∈ V ∗i ∩ C. Without loss of

generality, assume v was chosen after u. We have d(u, v) ≤ 2r∗. By definition of the algorithm,
once we add v to C, all points in U are distance at most 2r∗ to C. 2

2.2 MPC Approximation Algorithm for k-Centers

Now we will combine GreedyKC with our partition approach to give a MPC algorithm for k-
centers.

Note that we assume that initially the data is arbitrarily partitioned across all m machines
evenly.

Further, we assume that we have oracle access to the distance function d, so we do not need to
store the distance function on the machines, and we assume that each point of U can be stored in
O(1) space.

Intuitively, our algorithm will be to run GreedyKC on each machine, and to use the resulting
centers as a coreset for that partition. Then one machine will gather all the coresets and use them
to compute the final clustering.

Algorithm 2 Distributed k-center

Distributed-KC(U, k)

1: Partition U into m equal sized sets U1, . . . , Um where machine i receives Ui.
2: Machine i assigns Ci = GreedyKC(Ui, k)
3: All sets Ci are assigned to machine 1
4: Machine 1 sets C = GreedyKC(∪mi=1Ci, k)
5: Output C

Theorem 2 Distributed-KC is a two round MPC algorithm which achieves a 4-approximation
for the k-center problem which communicates O(km) amount of data assuming the data is already
partitioned across the machines. The algorithm uses O(max{n/m,mk}) memory on each machine.

The communication and memory requirements are clear, so it remains to show that Distributed-KC
is a 4-approximation.

Lemma 3 Distributed-KC is a 4-approximation for k-centers.



Proof: Let r∗ be the optimal objective value.
We first show that for all i = 1, . . . ,m, dCi(u) ≤ 2r∗ for all u ∈ Ui.
Assume for contradiction this does not hold, so there exists i and some u ∈ Ui with dCi(u) > 2r∗.

By definition of GreedyKC, it must be the case that for any v, v′ ∈ Ci, d(v, v′) ≥ dCi(u) > 2r∗,
because otherwise we would have added u to Ci.

It follows, {u} ∪ Ci is a set of k + 1 points where each inter-point distance is at least 2r∗. By
the pidgeonhole principle, two points from this set, say v, v′ ∈ {u} ∪ Ci must be assigned to the
same center in the optimal solution, say c∗, so:

d(v, v′) ≤ d(v, c∗) + d(v′, c∗) ≤ 2r∗

This is a contradiction.

Note that an analogous proof as the previous claim shows that dC(u) ≤ 2r∗ for any u ∈
m⋃
i=1

Ci.

We combine these two results to show that Distributed-KC is a 4-approximation.
Consider any u ∈ U . If u ∈ Ci for some i, then by the second claim, dC(U) ≤ 2r∗.

Otherwise, u /∈
m⋃
i=1

Ci, so u ∈ Ui for some i. By the first claim there exists some c ∈ Ci with

d(u, c) ≤ 2r∗, and by the second claim, dC(c) ≤ 2r∗. Thus we conclude:

dC(u) ≤ d(u, c) + dC(c) ≤ 4r∗

2

3 Triangle Counting

Now we will apply the partition approach to another problem: triangle counting.

Definition 2 (Triangle Counting Problem) The input is an undirected graph G = (V,E) with
n vertices and m edges. We want to output the number of triangles (the number of 3-cycles) in G.

Observe that a naive partition algorithm will not work for this problem, because if the vertices
of a triangle are split across multiple machines, then such a triangle will never be counted by an
individual machine.

Triangle counting arises in social network analysis, where it is used to compute the clustering
coefficient of vertices in a graph. The clustering coefficient of a vertex v is defined by:

#{(u, v) ∈ neighbors(v) | uv ∈ E}(
deg(v)

2

)
The clustering coefficient can be used to detect ”tightly nit” communities (high clustering coeffi-
cient) and ”structural holes” (low clustering coefficient.)

3.1 Warm Up: Sequential Algorithms for Triangle Counting

A first idea could be to enumerate all subsets of 3 vertices, say {u, v, w} ∈
(
V
3

)
and check if u, v, w

form a triangle. This takes Θ(n3) time. Observe that this runtime is ”optimal” because in the



complete graph, there are Θ(n3) triangles, and in order to count them all, we really do need to
check all subsets.

However, can we do better if the graph is sparse, which is often the case in practical instances?
Consider the following idea: For each u ∈ V , iterate over all pairs (v, w) ∈ neighbors(v) and

check if u, v, w form a triangle. This takes Θ(
∑
v∈V

deg(v)2) time.

Observe that if all vertices in G have constant degree, then this algorithm takes Θ(n). We will
not formalize this here, but usually the degree distributions of social networks have heavy tails,
which gives a runtime of Θ(n2).

We can improve on this algorithm even further by defining a total ordering the vertices by
their degrees (ties are broken arbitrarily but consistently.) More precisely, for each u ∈ V , only
enumerate pairs v, w ∈ neighbors(u) such that deg(v), deg(w) > deg(u). It can be shown that this

algorithm runs in time Θ(m
3
2 ).

Note that all of these algorithms have worst-case runtime Θ(n3) in the case of the complete
graph, but the latter two have more nuanced runtimes that give much better performance in certain
cases.

3.2 MPC Algorithm for Triangle Counting using Overlapping Partitions

We solve the problem of the naive partitioning algorithm missing some triangles by constructing
overlapping partitions. We will combine this with the idea of the third sequential algorithm (defining
an order on our objects to avoid redundant enumeration.) These two ingredients will give us our
MPC algorithm for triangle counting.

More precisely, define a partition of V into ` equal sized groups, say V1 ∪ · · · ∪ V` = V . Then
for each (i, j, k) with 1 ≤ i < j < k ≤ `, let Wijk = Vi ∪ Vj ∪ Vk. Further, we define Gijk =
(Wijk, E[Wijk]) be the subgraph of G induced by Wijk. The following lemma is immediate.

Lemma 4 Every triangle in G is in some Gijk. The number of edges in each Gijk is O((n` )2).

Thus the high-level of our algorithm is as follows: Suppose we have a machine for each 1 ≤
i < j < k ≤ `, say mijk. For each mijk, we need to send it the requisite edges to construct the
subgraph Gijk. Then each mijk counts the number of triangles in Gijk, and sends that count to a
designated machine. The designated machine then sums up all counts and outputs the result.

Observe that a triangle can be present in multiple Gijk’s. We avoid over-counting by ordering
the Gijk’s lexicographically by (i, j, k). Then we count a triangle only in the lexicographically first
partition containing it.

Example: Suppose a triangle has all three of its vertices in V2. Then this triangle is contained
in Gijk for all (i, j, k) satisfying 2 ∈ {i, j, k}. However, the lexicographically first Gijk that contains
this triangle in G123, so we will only count it there.



Algorithm 3 Distributed Triangle Counting

trianglecount(G).

1: Suppose G is represented by its edge set E. Define the random partition V1 ∪ · · · ∪V` = V such
that each v ∈ V is independently and uniformly assigned to one of V1, . . . , V`.

2: For each uv ∈ E (regardless of what machine it is on), send a copy of uv to every mijk with
u, v ∈ Vi ∪ Vj ∪ Vk.

3: Each mijk counts the number of triangles on its machine and sends the resulting count to a
designated machine.

4: The designated machine sums up and outputs the total count.

Lemma 5 The expected size of any E[Wijk] is O(m
`2

).

Proof: Fix any edge uv ∈ E. We have Pr(u ∈ Wijk), P r(v ∈ Wijk) = 3
` . These events are

independent, so Pr(e ∈ E[Wijk]) = Pr(u, v ∈Wijk) = 9
`2

.
By linearity expectation, E[|E[Wijk]|] =

∑
e∈E

Pr(e ∈ E[Wijk]) = 9m
`2

. 2

Thus in expectation (and with high probability using Chernoff bounds) each mijk requires O(m
`2

)
memory and there are O(`3) machines.

We summarize the performance of trianglecount with the following theorem:

Theorem 6 Let ` ≤
√
m. Then trianglecount uses O(`3) machines, and with high probability,

the total work done over all machines in O(m
3
2 ).

Proof: With high probability, each mijk stores a subgraph with O(m
`2

) edges. Triangle counting on

each machine takes O(m
3
2

`3
) using the third sequential algorithm. Summing over all O(`3) machines

gives total work O(m
3
2 ). 2

Thus we have given a MPC algorithm for triangle counting that does the same amount of work
as the sequential algorithm.


