
Algorithms for Massive Data Science Lecture date: March 18, 2019
Instructor: Ben Moseley Scribe: Thomas Lavastida

1 Course Motivation

The size of data sets and the rate at which we can collect data has increased greatly in recent
years. Contrasting this, it is less understood how to process this data efficiently to improve decision
making and analytics in practice. This is not due to a lack of algorithms to solve the corresponding
problems, but due to a lack of algorithms that can efficiently process large data sets. The primary
bottlenecks are large running times and memory that is too small to store the entirety of a large
data set. These bottlenecks have created a need for new approaches to how we model computation
and design algorithms. We will focus on models of computation that address these bottlenecks by
implicitly enforcing small run time and small memory footprints.

2 Overview of Approaches to Big Data

Broadly speaking, approaches to efficiently processing big data fall into two groups, sequential
algorithms and parallel/distributed algorithms.

2.1 Sequential Algorithms

In the sequential world we think of data being stored in some external memory and it is processed
by a single processor. An algorithm in this world should try to be efficient with respect to how
it accesses the external memory. In other words, we think of algorithms that need to access the
external memory often as being inefficient.

In the second half of the course we will study the streaming model, which will be similar to
this notion of I/O efficient algorithms. The Streaming model will be formally defined later in the
lecture, but for now we can think of a Streaming algorithm as one that only makes one pass through
the input and it only needs to store a small part of the input in order to construct a solution to
the problem of interest.

2.2 Parallel and Distributed Algorithms

In the parallel/distributed world there are usually many processors that can be used to process the
data simulataneously. How memory is handled usually depends on the model. For example, in the
PRAM model there are a collection of processors each with access to a large shared memory. The
input to the problem is stored on the shared memory, and then the processors work together to
solve the problem of interest. To contrast this in message passing models such as CONGEST, the
machines have local memory and are able to communicate by sending messages over a communica-
tion network. Graphics Processing Units (GPU’s) have also been used to speed up data processing
tasks.

Our focus on parallel/distributed algorithms will be through the Massively Parallel Model of
Computation (MPC), formerly known as the MapReduce (MR) model.



3 Defining the Models

Before formally defining the Streaming and MPC models, we need to recall the classical RAM
model of computation.

3.1 The RAM Model

The Random Access Machine, or RAM, model consists of a single processor and pool of memory.
The memory is an array of words with each word being addressable by a natural number. For
technical reasons, we assume that words are made up of either O(1) or O(log n) bits, where n is the
input size of a problem. The processor is able to read and write to any memory location in O(1)
time. It also has a number of basic operations such as +,−,×,÷, testing conditions, branching,
etc. Each of these basic operations are assumed to take O(1) time. Thus the goal in designing
algorithms for the RAM model is to minimize the total number of operations used by the algorithm.

The motivation for this model is that it captures a simplified view of how a standard computer
system works. However, there are many aspects of real systems that are not captured by this
model. Typically, a real system has a memory hierarchy with multiple levels of cache, DRAM, and
disk memory that all have to communicate with each other. This typically induces bandwith and
latency costs that are not captured by the RAM model. Modern CPUs also have many cores that
can work on different tasks in parallel. Despite this difference between theory and practice, the
RAM model has been effective in finding the core techniques for designing efficient algorithms.

3.2 Motivation for Streaming

In the Streaming model we imagine that there is a huge amount of data arriving one piece at a
time, and there is limited space. As each piece of data arrives, the algorithm will process and then
discard it. For correctness, the algorithm must maintain some function f(Ai) where Ai is the first
i pieces of data.

In practice, this scenario may be realized by a large data set that is stored on a number of
storage disks. The processor may have a small amount of cache memory where it can store a very
small “sketch” of the data in order to maintain the function f(Ai) at each step. Accessing data
from the disk incurs a high time cost, so it is desirable to minimize the number of passes made over
the data.

3.3 The Vanilla Streaming Model

In the Streaming model there is a single processor with a very limited amount of memory. The
processor makes one pass over the input data, receiving each piece of the input in discrete time
steps. The input is an ordered set A = {a1, a2, . . . , am} and we let Ai = {a1, . . . , ai} be the first i
elements. Each item ai has size O(log n) and in step i the algorithm receives item ai. The goal is
either to compute some function f(A), that is the solution to a problem of interest, or be able to
return f(Ai) at step i. Rather than storing all elements of Ai and naively computing f(Ai), the
algorithm must use a limited amount of space while still being able to return f(Ai). In general,
the algorithm must use space o(min{m,n}), with an ideal space of requirement of O(logm+log n).
Relaxed versions of this model allow for more than one pass over the data.



Streaming is a very well understood area of research, with many standard techniques and
algorithms. This contrasts with the growing area of Massively Parallel algorithms, which are not
as well understood.

3.4 Motivation for MPC

The MPC model is motivated by practical distributed computing frameworks such as MapReduce
and Spark. These frameworks act as a somewhat restricted programming language that allow the
user to easily deploy code on 10’s to 1000’s of machines to process large data sets in parallel. These
languages are restricted in a way in order to ensure efficient machine utilization as well as easy
parallelization.

Initially, these frameworks were used for very simple data processing tasks such as computing
word frequency in a document. In order to solve more interesting problems using these frameworks,
we can model the essential aspects of these frameworks. The goal of these models is to capture
the key constraints in writing efficient code within these frameworks. This has opened up the
possibility of being able to solve big data problems we cannot currently handle. There are many
open problems with potential for high impact in this area.

3.4.1 How do these Frameworks Operate?

Typically, there is a set of m machines, connected by a communication network that is a complete
graph. That is each machine can send and receive messages to/from any other machine. Initially,
the data is equally distributed across all the machines in either an arbitrary or random manner.
The computation proceeds in synchronous rounds. During a round, each machine can process
its local data by running a sequential algorithm. The round ends when all machines complete
their local computation and syncrhonize. In between rounds, the machines communicate with each
other to exchange data. The communication between rounds is one of the highest bottlenecks in
performance for these frameworks.

There are several key features that we need to model. First, since rounds are synchronous,
the length of a round is bounded by the longest computation run by a machine. Thus we need
local computations to be efficient. Next, since communication is significant bottleneck we need to
minimize the total amount of communication. We use the number of rounds as a simple surrogate
for the total amount of communication. To avoid trivial solutions, we require that the local memory
of each machine is small compared to the overall size of the data. We also require that a machine
can communicate no more data than the size of its local memory each round.

There is a brief history for these models starting with the paper of Karloff, Suri, and Vassilvitskii
in SODA 2010 [1]. The model led to clean algorithmic ideas that were implementable in practice.
Over time the model has been refined, so we will focus on a more recent version of the model.

3.5 The MPC Model

In the MPC model, there are m machines and an input of total size n. Each machine is a RAM with
a bounded amount of memory. We require the space/memory per machine S to be S = Õ(n/m),
where Õ(·) hides factors that are polylogarithmic in n or m. Thus the total amount of memory
across all machines is Õ(n). Generally, we will have m = nε for some constant ε ∈ (0, 1). In some
cases we can get algorithms that work for any contant ε ∈ (0, 1), but this is not necessary. This



restriction enforces that the number of machines and the memory per machine is sublinear in n.
This is an important restriction since we think of the data set as being very large.

Ideally, the number of rounds an algorithm uses would be constant, but we generally allow for
polylogarithmic in n number of rounds. Moreover, the local computation on each machine in each
round should be a polynomial time algorithm in the RAM model using at most S space. Theoret-
ically, we allow for abitrary polynomial time local computations, but in practice it is important to
keep local computation as efficient as possible.

Communication occurs between rounds and can occur between any pair of machines. Each
machine can communicate at most its local memory amount of data in a round.

3.5.1 The Extra Memory Setting

Sometimes it is useful that we have slightly more total memory when trying to generate algorithmic
ideas. After finding a good algorithm for this setting, it can then be refined to fit into the more
restrictive case above. The extra memory setting is as follows. The total memory is Õ(n1+ε/2) for
some ε ∈ (0, 1). Taking m = Θ(nε) ensures that the number of machines is sublinear in n and that
the memory per machine is Õ(n1+ε/2/nε) = Õ(n1−ε/2) and thus also sublinear in n.

3.5.2 Key Constraints

Data is either randomly or arbitrarily distributed among the machines. Data can only be processed
locally, and no communication between machines occurs during a round, only between rounds. How
data is communicated between machines must be decided locally, i.e. there is no coordinator that
makes communication decisions for machines. Each machine locally decides which other machines
to send messages to and what to send.

Unlike the Streaming model, no single machine sees the entire data set. This is a result
of requiring sublinear memory per machine and at most polylogarithmic in n rounds of com-
putation. The maximum amount of data a single machine can see under these restrictions is
Õ(n1−ε) · polylog(n) = o(n). This requires algorithms to really break up a problem and use paral-
lelism to find solutions.

3.5.3 Pros and Cons of the Model

A strong pro of the model is that it is simple and elegant to describe. For the most part, it captures
the major constraints in effectively using frameworks such as Spark and MapReduce, while hiding
many of the ugly details. This allows us to identify the key algorithmic challenges for finding
scalable solutions to a problem. This model is also different from past models such as PRAM,
CONGEST, and Congested Clique, so in principle we can find very different solutions to problems.
In general we do worst case analysis, which yields robust solutions.

A con of this model is that in some cases it may be too simplified. Complicated algorithms
designed for this model with strong bounds on the number of rounds may not translate well to
efficient code in Spark or MapReduce. Some problems may not fit into this model at all. Moreover,
it is hard to find lower bounds due to a connection to results in circuit complexity [2]. Practical
inputs may not be worst case, so the worst case results we show may be very pessimistic in practice.



4 Word Frequency Count in 2 Rounds

Now that we have seen the MPC model lets see a problem and give a simple 2 round algorithm
to solve it. In this problem, the input is a collection of documents. Each document is a tuple
(ID,W ) consisting of a numeric label ID and a list of words W , where words are possibly du-
plicated. To solve the problem we must output for each distinct word the number of times it
appears across all documents. For example if the input is (0, [‘big’,‘data’]), (1, [‘big’]), the output
is (‘big’, 2), (‘data’, 1).

The total input size N is the total number of words across all documents. Since many words
are repeated often in documents (such as “the“), we assume that the number of distinct words
is O(

√
N). We also assume that each document has at most O(

√
N) words and that words are

constant size. We give a 2 round algorithm using m = Θ(
√
N) machines. Initially the documents

are distributed across the m machines.

Round 1

In the first round, for each distinct word w on a machines local memory, the machine computes the
frequency count of w on its local documents. Let cw,i be the count of word w on machine i. Now
each word w picks a unique machine. Each machine i communicates cw,i to the machine designated
for word w.

Round 2

The machine for each word w computes
∑m

i=1 cw,i and outputs the resulting count.

Analysis

The algorithm runs in two rounds and it clearly computes the correct result. Let’s check that it
falls into the memory restrictions. Initially, the data is partitioned equally across the machines so
the memory per machine is O(N/m) = O(

√
N) when m = Θ(

√
N). Thus we satisfy the memory

requirements with ε = 1/2. Since there are O(
√
N) distinct words, each can be assigned a unique

machine for this choice of m, moreover each machine sends and receives at most O(
√
N) pieces of

information between rounds 1 and 2, satisfying the communication requirements.
Note that we made several assumptions for this analysis. The algorithm can be made more

robust to relax some of these assumptions.

References

[1] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for mapre-
duce. In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages
938–948. SIAM, 2010.

[2] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and circuits (on lower
bounds for modern parallel computation). J. ACM, 65(6):41:1–41:24, 2018.


	Course Motivation
	Overview of Approaches to Big Data
	Sequential Algorithms
	Parallel and Distributed Algorithms

	Defining the Models
	The RAM Model
	Motivation for Streaming
	The Vanilla Streaming Model
	Motivation for MPC
	How do these Frameworks Operate?

	The MPC Model
	The Extra Memory Setting
	Key Constraints
	Pros and Cons of the Model


	Word Frequency Count in 2 Rounds

