95-771 Data Structure and Algorithms Fall 2016

Homework 6 Assigned: November 30, 2016
Due: 11:59:59 PM, Wednesday, December 14, 2016

Write a Java program that simulates a Turing Machine.
The Turing machine that we will simulate can be formally defined as M = (Q,(,(,(,q0,B): where

Q, a finite set of states. For this program Q = {0,1,2,…n-1} and is selected

 by the client programmer.

(= { 0,1,B } is the finite set of allowable tape symbols
B, a symbol of (, is the blank

(= { 0,1}, a subset of (not including B, is the set of input symbols
(: Q x ((Q x (x {L, R} ((may, however, be undefined for some

 arguments)

q0 = 0 is the initial state

Our tape will be infinite in both directions. To simulate this, define an array of size 40 and set the initial read/write head to 20 (the middle of the tape). Our simulation will only work for machines that stay within this range. You need not test boundary cases.
Suppose that we wanted our program to simulate the machine with the following values for delta:

 ((q0,0) = (q0,1,R)

 ((q0,1) = (q0,0,R)

 ((q0,B) = (q1,B,L)

This machine reads the tape from left to right and replaces any 1’s with 0’s and any 0’s with 1’s. It stops, by entering the halt state, when it encounters a B in the input. We will call this a one state machine (there is always an additional Halt state.)
Your task is to write a Java program (Turing1.java) that simulates this machine. The main routine of your solution will look like the following:

public static void main(String args[]) {

 Turing machine = new Turing(1); // This machine will have one state.

 // Note: There is an additional halt state.
 // The values on the input tape are set to

 // all B’s.

 Transition one = new Transition('0',Transition.RIGHT, 0);

 Transition two = new Transition('1',Transition.RIGHT, 0);

 Transition three = new Transition('B', Transition.LEFT,1);

 machine.addTransition(0, '0', two);

 machine.addTransition(0, '1', one);

 machine.addTransition(0, 'B', three);

 String inTape = "11111100010101"; // The leftmost value of inTape will be

 // placed under the read/write head.
 System.out.println(inTape);

 String outTape = machine.execute(inTape);

 System.out.println(outTape);

 }

And the output of this program is shown below:

C:\McCarthy\www\90-723\TuringMachine>java Turing

11111100010101
BBBBBBBBBBBBBBBBBBB00000011101010BBBBBBB
The transition Transition one = new Transition('0',Transition.RIGHT, 0); along with the add method machine.addTransition(0, '1', one); assigns to state 0 a transition on '1'. This transition replaces the 1 with a 0, moves the read head right and returns to state 0.
Note that state 1 is the halt state. The tape will contain an infinity of blanks in both directions. We are representing this infinity of B's only partially, with a small array filled with B's. We are laying down the input into the middle of this array before processing the input. The actual numbers of B’s that appear in the output is of no importance here.
Submit a zipped directory containing all of the Java code that you used to simulate the machine. For grading, we must be able to edit the main java file Turing1.java so that we can test your program against various input tapes. The main routine will be identical to the main routine above.
90-723 Data Structures and Algorithms

Page 1 of 2

