
Carnegie Mellon University MISM

 1

Data Structures and Algorithms Project 3

Graph Coloring and Red Black Trees Due: February 27, 2024

A coloring of a graph is an assignment of a color to each vertex of the graph so that no two vertices
connected by an edge have the same color. The problem of coloring of graphs has been studied for many
decades. Unfortunately, coloring an arbitrary graph with as few colors as possible is one of a large class of
problems called “NP-complete problems”, for which all known solutions are essentially of the type “try all
possibilities”. In the case of the coloring problem, “try all possibilities” means to try all assignments of
colors to vertices at first one color, then two colors, then three, and so on. It is generally believed that no
algorithm to solve this problem can be substantially more efficient than this most obvious approach1.

While finding an optimal solution may require too much computer time, we may be able to get a ‘close to
optimal’ solution in a reasonable amount of time.

Consider two ways we could color the graph below.

1) Color 1 Red, Color 2 Red, Color 3 and 4 Blue, Color 5 Yellow.
2) Color 1 and 3 and 4 Blue, Color 5 and 2 Red.

While both are legal colorings, only the second is optimal.

The following algorithm uses a greedy heuristic to color a graph. This algorithm does not necessarily
produce optimal solutions.

Procedure greedy(G : Graph, newclr : Set)
// greedy assigns to newclr a set of vertices of G that may be given the same color
newclr = empty set
for each uncolored vertex v of G do
 if v is not adjacent to any vertex in newclr
 mark v colored
 add v to newclr

1 Aho, Hopcroft & Ullman, Data Structures and Algorithms, 1983

1

3

5
2

 4

Carnegie Mellon University MISM

 2

This program is a refinement of the greedy algorithm on page one.

Procedure greedy (G : Graph, newclr : LIST)
// greedy assigns to newclr those vertices that may be given the same color
bool found
int v,w
newclr = emptyset
v = first uncolored vertex in G
while v <> null
 found = false
 w = first vertex in newclr
 while w <> null
 if there is an edge between v and w in G then
 found = true
 w = next vertex in newclr
 if found == false
 mark v colored
 add v to newclr
 v = next uncolored vertex in G

An application of graph coloring

Write a program that reads a data file containing a list of student class schedules. The name of the data file
will be entered on the command line. The output of your program will be (a) a two dimensional matrix that
represents the graph and (b) a final exam schedule. The format of the input file will always be as follows:

<student name> <N> <course name 1> <course name 2> … <course nameN> <return>
<student name> <K> <course name 1> <course name 2> … <course nameK> <return>
:
:
Each students name is in the form <last name>,<first name> with no intervening space characters . The
course names are all 6 characters in length and are separated from each other by spaces. Each course name
refers to a single section of the course and for each course, only one section is offered. (It’s a small school.)
The number after the student’s name represents the number of courses the student is taking. There is no
need to validate the file. We will assume that it has already been validated.

There is a maximum of 40 students on the file. No student may take more than 5 courses. There is a
maximum of 20 different courses offered each term.

Your program must build a graph from the data on the file. Process the graph with the greedy algorithm
shown above and display a schedule of final exams. Final exams must be scheduled in such a way that no
student has a conflict. For example, if Sue is taking both ENG040 and MAT100 then the final exam for
each of these courses must be scheduled at a different time. Sue cannot be in two places at once.

The output of your program must be in the following form:

Final Exam Period 1
 <course name >
 <course name >
Final Exam Period 2
 <course name >
Final Exam Period P
 <course name >

Carnegie Mellon University MISM

 3

Dictionary Implemented as a Red Black Tree

You must use a dictionary to differentiate between those course names that we have previously seen on the
file and those that the program is encountering for the first time. The basic idea is to read the course name
and check the dictionary to see if the name has been seen before. If it’s a new name, we need to assign to it
an integer that will be used to represent the course in the graph. If it’s an old name, we need the dictionary
to tell us what integer was assigned to that name.

For example, the first course name read will be assigned the number 0. Why ? Well, we looked in the
dictionary and it was not there. So, we assigned this course the number 0. The second course name will be
assigned the number 1 (if it is a different name than the first). If it’s the same name as the first then we can
retrieve its number from the dictionary, i.e., 0.

The dictionary itself will be implemented as a Red Black Tree of name value pairs. The name will be the
course name and the value will be an integer – assigned sequentially as discussed above.

On the class schedule is the Javadoc specifications for two classes: RedBlackNode.java, and
RedBlackTree.java. You are required to implement the insert method along with any additional methods
that are appropriate for this project. If you need additional or modified methods, feel free to add or modify
them. You are not required to implement methods found in the Javadoc that are not needed for this project.
The implementation must be adapted to handle name, value pairs.

Example Data File

Smith,Al 2 mat100 che080
Jones,Sue 2 eng040 mat100
Bell,Amy 2 eng050 gym000
Gingrich,Fred 3 gym000 his098 eng040

The following graph would be constructed in an Adjacency Matrix:

 0 1 2 3 4 5
 0 0 1 1 0 0 0
 1 1 0 0 0 0 0
 2 1 0 0 0 1 1
 3 0 0 0 0 1 0
 4 0 0 1 1 0 1
 5 0 0 1 0 1 0

An array of strings would also have been constructed that looks like the following:

0 à mat100
1 à che080
2 à eng040
3 à eng050
4 à gym000
5 à his098

After displaying the matrix and coloring the graph, the program would produce the following exam
schedule:

Final Exam Period 1 => mat100 eng050 his098
Final Exam Period 2 => che080 eng040
Final Exam Period 3 => gym000

Carnegie Mellon University MISM

 4

The following code may be of use when reading the input file:

// IO Demo

import java.io.*;
import java.util.*;

public class InputDemo {

public static void main(String args[])
{
 try{
 BufferedReader in =
 new BufferedReader(
 new FileReader(args[0])
);

 String line;
 line = in.readLine();

 while(line != null) {
 processLine(line);
 line = in.readLine();
 }
 }
 catch(IOException e) {
 System.out.println("IO Exception");
 }
 }

 public static void processLine(String line) {

 StringTokenizer st;

 // use space, and tab for delimeters
 st = new StringTokenizer(line, " \t"); // use split if you prefer

 while (st.hasMoreTokens()) {
 System.out.println(st.nextToken());
 }
 }
}

Submission Requirements:

Run your solution on the following input file:

Jones,Andy 3 ENG100 PSY050 MAT220
Hein,Peter 4 MAT010 CHM230 CSC401 HST080
Miller,Kyle 5 MAT010 CHM230 HST080 ECN110 PHY100
Williams,Ann 5 MAT010 ENG100 PSY050 CSC401 HST080
Kim,Jenny 3 ENG100 CHM230 HST080
Carter,Herb 5 PSY050 CHM230 CSC401 ENG100 PHY100
Popov,Dimitri 2 PSY050 PHY100
Smith,Kellie 3 PSY050 HST080 ECN110

Carnegie Mellon University MISM

 5

Your program will display an adjacency matrix corresponding to the input. Include a screen shot showing
the adjacency matrix output produced by your program.

Your program will find and display a schedule for final exams. Include a screen shot showing this final
exam schedule.

Place the screenshots and result.txt (described below) and all project related source files in a single
directory and zip that directory. The file will be named <yourandrewID>Project3.zip. For example, if I
were to submit project 3, it would be named mm6Project3.zip. Submit one zipped directory to Canvas.

Your source code must include your name and Andrew ID at the top of each class file. The source code will
be well documented. Variable names will be well chosen and the code will be easy to read.

result.txt

Your Project should include code to generate a text file named result.txt. If you need help, you can refer to
this website on how to use PrintWriter.

This file itself should also be included in your submission zip.

This file will be used for auto-grading, so please be careful with the formatting instructions below. The file
would look similar to this:

1. First line contains your Andrew ID, nothing else.
2. Line 2 onwards contains the adjacency matrix representation for the dataset given in

assignment (repeated below)

Line Breaks

This is dummy data (the above data is repeated).
Your submitted file will contain the results for the

actual test case provided.

Carnegie Mellon University MISM

 6

3. After the adjacency matrix for above test is printed, add a line break and print the
schedule (can be seen in lines 9-11 for this example) that you construct from data in
Step 2. Take note of the format. The period and the subjects are separated by this string
(ignore the quotes):
‘ => ’

4. In the sample screenshot, the same output has been repeated. But in your submission,
line 13 onwards, your code will write the output for the second dataset in the
assignment (repeated below)

5. First write the adjacency matrix in a similar format as shown.
6. Add a line break.
7. Write the schedule in a similar format as shown.

