90-771 – Data Structures and Algorithms

Homework #3

Due July 24, 2000 at 2 pm

Part 1 – Hashing: In class, we discussed the concept of “chained hashing.” In chained hashing, we resolve conflicts by allowing multiple elements to occupy one place in the hash table. For instance, if element X and element Y both have keys that hash to index two, then both elements are placed at index two. Chained hashing is generally implemented using an array of linked lists. When an element hashes to a certain index in the hash table, it is simply added to the linked list for that index. Attached is the Javadoc specification for a generic hashtable class. You are to implement this specification using the chained hashing approach discussed above. The hashtable supports two constructors, one initializes the hashtable with a default array size of 100, the other initializes the hashtable with the array size specified by the parameter capacity. Unless you really liked writing the code for your linked list class and want to do it again, you may want to consider reusing the SinglyLinkedList class you wrote for assignment #1 (or you can use the sample SinglyLinkedList class I gave you after that assignment was due). Note that you will need to change your class slightly in order to be able to use it for this assignment. You may use any hash function you want for your hashtable, as long as it distributes the elements fairly reasonably throughout the array.

Part 2 – Sorting: We have discussed in detail the use of mergesort for sorting an array of values. One of the advantages of mergesort is that it can easily be adapted to sort a linked list of values. This is because the algorithm retrieves the values from the two lists being merged in the order that they occur in the lists. If the lists are linked lists, then the algorithm can simply move down the list node after node. With heapsort or quicksort the algorithm needs to move values from random locations in the array, so they do not adapt as well to sorting a linked list. On the course web page, you will find a class FloatLinkedList that implements a singly linked list of floats in Java. This class also contains the skeleton for a method, public void sort(). You are to write the sort method for this class. Your sort method should sort the list using the mergesort algorithm. You should use linked lists, not arrays, for any intermediate steps taken in the sorting algorithm. Does using linked lists rather than arrays change the average or worst-case runtime for mergesort? Explain.

Deliverables

· For part 1 of the assignment, you should turn in Hashtable.java, and any other .java files you used in your implementation of Hashtable.

· For part 2 of the assignment, you should turn in FloatLinkedList.java and any other .java files you used in your implementation of the sort() method. In addition, you should turn in your write-up concerning whether using linked lists changes the average or worst-case runtime for mergesort (in MS Word or text format).

The deliverables for this assignment should be placed on an otherwise empty floppy disk with two directories called hashing and sorting.

As in the first two assignments, your work will be graded on the programming practices you followed in addition to whether or not your implementation actually works. The grading breakdown will be roughly the same as that used in the first two assignments. Both parts of the assignment will be given approximately the same weight.

