
95-771 Data Structures and Algorithms for Information Processing Carnegie Mellon University

 1

95-771 – Data Structures and Algorithms for Information
Processing
Project 3

Due Monday, October 14 Midnight 11:59:59 PM

The material covered in this project will appear on the midterm exam.

Topics: Stacks, Red Black Trees and Reverse Polish Notation (RPN)

(1) 30 Points. Write a stack class called DynamicStack.java. It will be implemented
in an array with a top index initially set to -1. Each push operation will add one to the top
index and then add a new element at that location. Each pop operation will return the
value pointed to by the top pointer and it will decrease the top pointer by 1. The stack
will hold Java objects. Thus, it will be able to contain such Java objects as Strings and
BigIntegers. You should also provide a method called isEmpty. This method returns true
if and only if the top index is -1.

 The array, within which the stack “lives”, must grow if it needs to. The array will
begin with a size of 6. If the array is full and a push operation is executed, create a new
array of twice the size as the old and copy the elements within the old array over to the
new array. In this way, we will run out of stack space only when we have too little
memory to accommodate this doubling of capacity. In this program, we will not be using
that much stack space (that is, not enough stack space that would overwhelm the heap
manager in the JVM) and so overflow will not be treated as a concern. When the stack
grows smaller, there is no need to copy data over to a smaller array. Our array will only
grow as needed – never shrink.

 Other methods may be added to your stack class as needed. All additional
methods will preserve class invariants (which should be described with comments) and
will be true to the nature of a stack.

 Your DynamicStack class will have main routine that tests it. The test will include
a loop that pushes 1000 values to the stack. Another loop will pop and display all 1000
values pushed.

Within your DynamicStack code, describe the worst and best case behavior of your push
operation – in terms of Big Theta.

(2) 40 Points. Recall the Red Black Tree that you wrote in Project 2. The tree was
used to hold a set of words for spell checking. The CLR pseudocode provided for the
insertion and lookup of a single key. In this project, your solution will provide for the
insertion and lookup of a key, value pair. The key will always be a Java String
(representing the name of a variable) and the value will always be a Java BigInteger. You
will need to modify your Red Black Tree appropriately.

95-771 Data Structures and Algorithms for Information Processing Carnegie Mellon University

 2

 Provide a main routing that tests your new Red Black tree. The test code will add
key and value pairs to the tree. It will perform lookups for the key, retrieving the value –
a BigInteger. Note, the tree is ordered on the key (a String) and not on the value (the
BigInteger). Each key in the tree will be unique – no duplicate keys are permitted. If you
insert twice with the same key, the second will simply overwrite the first.

 Your main routine (for testing) should add twenty String, BigInteger pairs to the
tree. The first string will be the string “var1” with value 1. The second string will be the
string “var2” with value 2 and so on. It will then search the tree for two of the
BigIntegers (given the keys). It will then display the value of the BigIntegers found.

(3) 30 Points. Write a class called ReversePolishNotation.java that reads and then
evaluates postfix expressions involving BigIntegers and variables. It reads a line from the
user, evaluates the expression and displays the result. It continues to do this until the user
hits the return key with no input or it encounters an error. We will use the standard binary
operators (+, -, *, / , %, =) with their usual meanings. The assignment operator “=”
requires that the left hand side of the expression be a variable. We will also use a unary
minus. The unary minus will be represented with the tilde character “~”. Finally, we will
use a ternary operation - powerMod. powerMod computes x to the y modulo z. It will be
represented by the circumflex character “^”. All results will be integers. Below is an
example execution. User input is in red. The program’s output is in black.
 java ReversePolishNotation
 1 2 +
 3
 1 999999999999999999999999 +
 1000000000000000000000000
 2 4 *
 8
 1 3 /
 0
 1 3 %
 1

13 10 %
3

 10000000000000000000 2 /
 5000000000000000000

99999999999999999999999 ~
-99999999999999999999999
3 4 5 ^
1
12 2 3 ^
0
12 ~ ~ ~ ~ 2 3 ^

95-771 Data Structures and Algorithms for Information Processing Carnegie Mellon University

 3

0
 <return>
 terminating

 The example execution above only needs a stack of BigIntegers (and the
BigInteger API provided by Java). Your program will also use the Red Black Tree that
you wrote in (2) to store and retrieve variables and their values. Here is another execution
that uses variables.

 java ReversePolishNotation
 x 4 =
 4
 y 5 =
 5
 x y +
 9
 x x 20 + =
 24
 lowerVal 1 =
 1
 upperVal 10 =
 10
 interval upperVal lowerVal - 1 + =
 10

Note that the assignment operator returns the value assigned. So, we can run the
following:
a 4 = 2 +
6
Note too that a value or variable may be entered by itself and its value will be
printed:
a 4 = 2 +
6
a
4
With respect to error handling, you may assume that the user always enters a
space between tokens. You may also assume that all integer values are entered
correctly and that all variable names begin with a letter. The only error checking
that you are required to do is throw an exception and halt the program when the
stack underflows, a variable does not appear on the left of an assignment (a so-
called “lvalue violation”), or a variable that has not been given a value is being
dereferenced.

Here are three examples:
a 1 =
1
a b +

95-771 Data Structures and Algorithms for Information Processing Carnegie Mellon University

 4

Exception in thread "main" java.lang.Exception: error: no variable b
2 3 ^
Exception in thread "main" java.lang.Exception: error: stack underflow exception
3 4 =
Exception in thread "main" java.lang.Exception: error: 3 not an lvalue

Finally, be sure that your calculator works for large integer input:

coolBigNum 99999999999999999999999999999999999999 =
99999999999999999999999999999999999999
anotherBigNum 1 coolBigNum + =
100000000000000000000000000000000000000
c coolBigNum anotherBigNum + =
199999999999999999999999999999999999999

Summary
Submit a single zipped file to Canvas. The zipped file will be named
<yourAndrewID>Project3.zip. A complete project will contain at least the
following files:

DynamicStack.java
RedBlackTree.java (uses DynamicStack)
ReversePolishNotation.java
At least two screenshots showing example runs

