95-771 Data Structures and Algorithms for Information Processing Carnegie Mellon University

95-771 – Data Structures and Algorithms for Information Processing

Homework #3

Due Wednesday, October 17, 2012 Midnight

The topics discussed in this project are fair game for the midterm exam.

Topics: Stacks, Red Black Trees and Reverse Polish Notation
In this exercise, you will write a program to evaluate boolean expressions expressed in Reverse Polish Notation (RPN). Boolean values are encoded as ‘1’ for TRUE and ‘0’ for FALSE. The Boolean operators are encoded as ‘+’ for OR, ‘*’ for AND and ‘-‘ for NOT. The two binary operators that you will implement are ‘+’ and ‘*’. The ‘-‘ operator is a unary operator and takes a single operand.

The expressions will be evaluated from left to right. If a Boolean value (‘0’ or ‘1’) is encountered in the input then that value is simply pushed on the stack. If a Boolean operator (‘+’,’*’, or ‘-‘) is encountered then the appropriate number of operands are popped off of the stack, the operation is performed, and the result is pushed back on the stack. As an example, the expression “(1*0)+1” would be written in RPN as “1 0 * 1 +”.

With RPN expressions, we do not need parenthesis to specify the order of operations.

Computation of the result would proceed as follows:

1. Examine 1, determine that it is an operand and push it on the stack.

2. Examine 0, determine that it is an operand and push it on the stack.

3. Examine *, determine that it is an operator which requires two operands.

· Pop the top two values off of the stack (0 and 1).

· Compute the logical AND operation and place the result, 0, on the stack.

4. Examine 1, determine that it is an operand and push it on the stack.

5. Examine +, determine that it is an operator which requires two operands.

· Pop the top two values off of the stack (1 and 0)

· Compute the logical OR operation and push the result, 1, back on the stack.

6. The result of the expression is now the top value on the stack.

You should begin by implementing a Stack class. This class may be implemented with the doubly linked list class that you wrote in homework 1 or with an array. Either implementation will be fine. In either case, it will be a stack of Java Objects. Use JUnit to test your Stack class. The doubly linked list or array will be a private member of the Stack class (the OOP “has-a” relation). Once you have written the Stack class and are confident it is working (use JUnit tests), you should write the RPNBooleanCalculator class using your Stack class in a “has-a” relation. That is, an RPNBooleanCalculator object “has-a” Stack object and so the Stack object should appear as a private member in each RPNBooleanCalculator object. Once you have completed your implementation, you should examine each method that you have written and state the worst and best case Big-Theta (as you did in the first assignment). Include these statements in your Javadoc for each method.

Write a third class called RPNBooleanParser.java. This class will have a main method that drives the system. The code of this main method follows:

public static void main(String[] argv) throws IOException

 {

 // prepare to read lines

 BufferedReader input = new BufferedReader(

 new InputStreamReader(System.in));

 // build a calculator object

 RPNBooleanCalculator the_calc = new RPNBooleanCalculator();

 while (true)

 {

 // Use Java’s StringTokenizer class

 StringTokenizer strtok = null;

 String line = input.readLine();

 strtok = new StringTokenizer(line," ");

 // a blank lined entered means quit

 if(!strtok.hasMoreTokens()) break;

 while (strtok.hasMoreTokens())

 {

 String token = strtok.nextToken();

 // It may be a boolean, a name or an operator

 // boolean values get pushed

 if(token.equals("0")) the_calc.value(false);

 else {

 if(token.equals("1")) the_calc.value(true);

 else {

 if (isOper(token)) doOperation(the_calc, token);

 else the_calc.value(token); // push variable name on the stack

 }

 }

 }

 // end of line reached, pop and display stack top

 doOperation(the_calc,"pop");

 }

 }

The RedBlackTree class that you wrote in homework 2 will be reused in this homework. It will be modified from homework 2 so that it is able to hold <key, value> pairs. Call this new class RedBlackTreeDictionary. The key will be unique in the tree and will be of type String. The value will be of type Boolean, a built in non-primitive Java class. The Boolean value need not be unique in the tree. You only need to implement two methods on this dictionary. You will need a put method and a get method with the following signatures:

public void put(String key, Boolean value);

pre: the tree exists and is a Red Black binary search tree.

post: the <key,value> is entered into the tree and the key is unique within the tree.

If the key was in the tree before then its old value is replaced with this new value.

Boolean get(String key);

Pre: a value with this key already exists in the tree.

Post: the Boolean value is returned.

When RPNBooleanParser.java is run it should allow for Boolean expression evaluation and the assignment of values to variables. This will be done using the red black tree to hold the variable names and values. The assignment statement should be handled like other operators. For example, the expression y 0 = must assign the value of false to y. The expression “m 1 0 + = “ will assign the value of true to m. If these statements have been entered into the calculator then the expression m y + will result in the value true. In this last case, we are dereferencing the values of m and y.

Here is a sample run of my solution. I would like your program to have the same output. Note that we are not checking for error in the input. In this homework, you may always assume that the expressions are meaningful and well formed. The program responds with true or false after each line is entered.

C:\McCarthy\www\95-771\Homeworks\homework3>java RPNBooleanParser

1 0 +

true

0 1 + 0 1 * +

true

0 1 - +

false

0 0 * -

true

0 1 * 0 1 + -

false
a 1 =

true

b 0 =

false

a b + -

false

c 1 =

true

a b + c +

true

a b * c *

false

d c =

true

coolExpression c =

true

a coolExpression - +

true
Grading

Post the following to the assignment section of blackboard:

1. A zip file (that includes your name in the file name) that contains a Netbeans or Eclipse project.

2. Within the project, the following java source files:

Stack.java

RPNBooleanCalculator.java

RPNBooleanParser.java

Other classes may be included if needed.

3. The grader will look for evidence that JUnit testing has occurred. You need not test everything but you must demonstrate that you are able to write test code and use JUnit in Netbeans or Eclipse or some other environment. You should include your test code in your Netbeans or Eclipse projects.

4. The grader will also look over your program comments. You should make use of Javadoc. Each method needs to have a Javadoc description and provide a Big Theta analysis. Code that is tricky or at all complex needs to be described with comments.

5. The grader will also run your program and test it with expressions (similar to the above example execution).

PAGE
1

