95-771 Data Structures and Algorithms for Information Processing Carnegie Mellon University

95-771 – Data Structures and Algorithms for Information Processing

Homework #2

Due Wednesday, September 24, 2007 Midnight

Topics: Stacks, Queues, and Binary Trees

Part 1 – Stacks (40 Points) Many Hewlett-Packard calculators use a format known as Reverse Polish Notation (RPN) for inputting arithmetic expressions. These calculators use a stack to help perform the computations necessary to determine the result of an expression. Expressions are evaluated from left to right. If a number is encountered in the input then that number is simply pushed onto the calculator’s stack. If an operator is encountered (+,-,* , or /), the appropriate number of operands are popped off of the stack, the operation is performed, and the result is pushed back on the stack. As an example, the expression “(3-2)/4” would be written in Reverse Polish Notation as “3 2 – 4 /”. Computation of the result would proceed as follows:

1. Examine 3, determine that it is a number, and push it on the stack.

2. Examine 2, determine that it is a number, and push it on the stack.

3. Examine -, determine that it is an operator and so requires two operands.

· Pop the top two values off of the stack (2 and 3).

· Subtract the first from the second (3 – 2) and place the result, 1, on the stack.

4. Examine 4, determine that it is a number, push it on the stack.

5. Examine /, determine that it is an operator and so requires two operands.

· Pop the top two values off of the stack (4 and 1)

· Divide the second by the first and push the result, 0.25, back on the stack.

6. The result of the expression is now the top value on the stack.

Attached are two javadoc specifications relating to part one of this assignment, RPNCalc.html and Stack.html. You should begin by implementing the Stack class. This class must be implemented with the doubly inked list that you wrote in homework 1. The doubly linked list will be a private member of the Stack class (the “has-a” relation). It will be modified to be a doubly linked list of java Objects rather than chars. Once you have written the Stack class and are confident it is working, you should write the RPNCalc class using your Stack class in a “has-a” relation. That is, an RPNCalc object “has-a” Stack object and so should appear as a private member in each RPNCalc object. Once you have completed your implementation, you should examine each method you have written and state the worst and best case Big-Theta (as you did in the first assignment).

Another class has been provided that we will use to test your RPNCalc class. This class is called RPNParser.java and is included on the web page.

As an example, evaluation of the expression given above (3 2 – 4 /) will result in the following calls to the RPNCalc class:

1. number(3)

2. number(2)

3. subtract()

4. number(4)

5. divide()

If the user then wants to see the result of the calculations, the top() method would be called to examine the top of the stack.

Part 2 – Binary Trees (40 Points) – Attached is the javadoc specification for the class bst. This class is an implementation of a binary search tree in Java. You have seen in class how a binary search tree works. A binary search tree is a binary tree in which values smaller than the value in a given node are stored in the left subtree of that node, and values greater than the value in a given node are stored in the right subtree of that node. For purposed of this assignment, you may assume that the tree will not contain duplicate values. That is, we are implementing a set and not a bag. Following the javadoc specification given, you are to write an implementation of the bst class. You do not need to worry about keeping the tree balanced. Once you have completed your implementation, you should examine each method you have written and state the worst and best case Big-Theta (as you did in the first assignment).

The method levelOrder() must use a queue to perform the traversal. So, you will need to write a Queue class. As in Part 1 of this homework, the Queue class will be written using the modified DoublyLinked clas that you wrote in homework 1. An algorithm for a level order traversal is provided on the course slides.

Include a main routine that acts as a test driver for your bst. Be very careful to use the exact same names as we did so that your bst class will work with our test program.

Part 3 – Stacks and Binary Trees (20 Points) – Rewrite the bst tree class so that it is able to hold <key, value> pairs. Call this new class BST2. The key will be unique in the tree and will be of type String. The value will be of type Float (a built in Java class) and need not be unique). You only need to implement two methods on this tree. You will need a put method and a get method with the following signatures:

public void put(String key, Float value);

pre: the tree is exists and is a binary search tree.

post: the <key,value> is entered into the tree and the key is unique within the tree.

If the key was in the tree before then its old value is replaced with this new value.

Float get(String key);

Pre: a value with this key already exists in the tree.

Post: the value is returned.

Rewrite RPNCalc.java and RPNParser.java and call these files RPNCalc2.java and RPNParser2.java. When RPNParser2.java is run it should allow for the assignment of value to variables. This will be done using the binary tree to hold the variable names and values. The assignment statement should be handled like other operators. For example, the expression y 3 = must assign the value of 3 to y. The expression m 4 3 + = will assign the value of 7 to m. If these statements have been entered into the calculator then the expression m y + will result in the value 10.

Here is a sample run of my solution. I would like your program to have the same output.

C:\McCarthy\www\95-771\Homeworks\homework2>java RPNParser2

1 2 +

3.0

4 5 +

9.0

1 3 + 4 5 + *

36.0

x 4 =

4.0

y 5 =

5.0

0 x +

4.0

0 y +

5.0

x y /

0.8

x y +

9.0

y x /

1.25

z x =

4.0

x y + z 2 * +

17.0

hours 40 =

40.0

pay 10 =

10.0

gross hours pay * =

400.0

gross 0 +

400.0

User input is in bold type. Modify RPNParser.java so that it echoes the value assigned or the value computed. You need not check for errors. You may always assume that the expressions are meaningful and well formed.

Post the following to the digital drop box:

1. A zip file containing exactly three directories with the following directory names:

Stack

Tree

VariableCalc

2. Within the Stack directory, the following files .java:

Stack.java

RPNCalc.java

RPNParser.java

DoublyLinkedList.java

3. Within the Tree directory, the following .java files :

bst.java

Queue.java

DoublyLinkedList.java

4. Also, within the Tree directory, the following subdirectory

HTML

 This directory should contain the output of the javadoc utility run

 against the Queue. (You need not turn in javadoc for any of the

 other classes). We will browse this Queue.html file looking

 at pre-conditions and post-conditions.

5. Withing the VariableCalc directory, the following Java files:

BST2.java

Stack.java

DoublyLinkedList.java

RPNCalc2.java

RPNParser2.java

6. Include copies of DOS or Eclipse screens as each program runs.

PAGE
1

