90-771 Data Structures and Algorithms

Homework 4

95-771 Data Structures and Algorithms for Information Processing Carnegie Mellon University

95-771 Data Structures and Algorithms for Information Processing Homework 4

Due: Thursday November 5, 2008

Topics: Lempel-Ziv Welch Compression, Java HashMap

Write a Java implementation of the Lempel-Ziv Wech compression algorithm. Your program will be able to compress and decompress ASCII and binary files.

In this homework we will depart from our custom of building the primary data structures by hand and will make use of a Java Map. The Map interface is implemented by a TreeMap or a HashMap and your program must be written so that it’s a simple matter for the programmer to change Maps. Specifically, the programmer may write either “Map m = new TreeMap();” or “Map m = new HashMap(someSize);” and the program will still work.

In order to execute your program for compression the user will type the following:

java LZWCompression c Test.java out.txt

And to decompress the program is run with the following command:

java LZWCompression d out.txt Test2.java
In this example, Test2.java now has the exact same contents as Test.java.

Your program will use LZW 12-Bit compression. The input file to the compression algorithm will be read in 8-bit bytes. The output file will be written in 12-bit chunks. For example, suppose that the input file contained one byte (8 bits) of data. Your program would read this one byte and write two bytes to the output file. Only the first 12 bits of these 16 bits would be meaningful. For another example, suppose that your input file contained 2 bytes (16 bits) of data. The compressed output file would contain 3 bytes of data. This is because the two 8 bit bytes will compress to two 12 bit chunks. The two 12 bit chunks are contained in 24 bits, or three bytes.

Helpful Programs and the LZW Algorithm

Test.java demonstrates some of the issues encountered when moving bytes around with Java.

The program CopyBytes.java will be of help when reading and writing Java files. Note that this program works when reading and writing both binary and ASCII files.

The program GZipDecompress.java shows the way that an application programmer can decompress a file in Java. Please note that we are not using this approach in this project. We need to implement compression and decompression ourselves. I included it here so that you are aware of it. The program uses a filter design that we are not going to use – unless you are ambitious and want to tackle that issue as well. There will be no extra credit for a filter design.

An example program illustrating how Java represents binary data appears next.

// Some notes on Java's internal representation:

// After reading a byte (8 bits) and assigning the byte to a char variable

// (16 bits) we need to clear the uppermost 8 bits in the char since the byte

// will sign extend into the char.

public class Test {

 public static void main(String a[]) {

 byte b = -1; // b = 0xFF = 11111111 (8 bits)

 char c = (char)b; // c = 0xFFFF = 1111111111111111 (16 bits sign extension)

 c = (char)(c & 0xFF); // c = 0x00FF = 0000000011111111 (remove the extra bits)

 int t = c; // t = 0x000000FF = 0000-000011111111 (32 bits)

 System.out.println(t); // display 255

 b = (byte)255; // b = 0xFF = 11111111 (8 bits)

 c = (char)b; // c = 0xFFFF = 1111111111111111 (16 bits sign extension)

 c = (char)(c & 0xFF); // c = 0x00FF = 0000000011111111 (remove extra bits)

 t = c; // t = 0xFF = 000-000011111111 (32 bits)

 System.out.println(t); // displays 255

 System.out.println();

 // In the for loop below, the 16 bits in ch are not converted to an ASCII integer.

 // For example, when ch == 0000000000000000, there is no attempt to convert to ASCII 0

 // The screen may misbehave because some bit sequences are not printable.

 for(char ch = 0; ch <= 255; ch++) {

 System.out.print("" + ch);

 }

 System.out.println();

 // In this for loop, however, the integer is converted to an ASCII representation.

 // For example, when smallInt == 65, two ASCII characters are generated: '6' and '5'.

 // No misbehavior will occur here.

 for(int smallInt = 0; smallInt <= 255; smallInt++) {

 System.out.print("" + smallInt);

 }

 System.out.println();

 // Place a char into a String with no conversion.
 String test = "" + (char)0;

 System.out.println("Test = " + test);

 // Place an int into a String with conversion to ASCII.
 String test2 = "" + 0;

 System.out.println("Test2 = " + test2);

 // So, String objects may hold non-printable sequences of bits.

 }

}

The IO classes that are important for project four are exemplified below:

// copy a binary or text file

import java.io.*;

public class CopyBytes {

public static void main(String args[]) throws IOException {

 DataInputStream in =

 new DataInputStream(

 new BufferedInputStream(

 new FileInputStream(args[0])));

 DataOutputStream out =

 new DataOutputStream(

 new BufferedOutputStream(

 new FileOutputStream(args[1])));
 byte byteIn;

 try {

 while(true) {

 byteIn = in.readByte();

 out.writeByte(byteIn);

 }

 }

 catch(EOFException e) {

 in.close();

 out.close();

 }
 }

}

The compression algorithm that you will implement is as follows:

LZW_Compress(){
 enter all symbols in the table;
 read(first character from w into string s);
 while(any input left){
 read(character c);
 if(s + c is in the table)
 s = s + c;
 else {
 output codeword(s);

 Enter s + c into the table;

 s = c;

 } // end if/else
 } // end while
 output codeword(s);
}

The decompression algorithm that you will implement appears as follows:

LZW_Decompress(){
 enter all symbols into the table;
 read(priorcodeword) and output its corresponding character;

 while(codewords are still left to be input){
 read(codeword);

 if(codeword not in the table) {
 enter string(priorcodeword) + firstChar(string(priorcodeword)) into the table;
 output string(priorcodeword) + firstChar(string(priorcodeword));

 }

 else {

 enter string(priorcodeword) + firstChar(string(codeword)) into the table;
 output codeword;

 }
 priorcodeword = codeword;
 }
}

The following classes may not be used in Homework4. You should, however, be familiar with this approach.
// Use GZIP decompression to decompress a file Eckel Chapter 11

import java.io.*;

import java.util.zip.*;

public class GZIPDecompress {

 public static void main(String args[]) throws IOException {

 BufferedReader in = new BufferedReader (

 new InputStreamReader(

 new GZIPInputStream(

 new FileInputStream("test.gz"))));

 String s;

 while((s = in.readLine()) != null) System.out.println(s);

 in.close();

 }

}

Hint:
 Before writing a solution, I suggest that you write a simpler program that exercises bit manipulation and file I/O. That is, write a program that reads an ASCII or binary file one byte at a time and writes to an output file 12-bit chunks that represent the input. If, for example, there is one letter (8 bits) on the input file, the output file would have 16 bits (the leftmost 12 bits are active). If the input file holds two letters then the output file will contain exactly 24 bits. This is because each letter expands to 12 bits and two 12 bit chunks fits exactly into three 8 bit bytes.

 Write another program that reads the 12-bit chunks and writes back the original file. If you are unable to write these programs then you probably will not be able to solve the larger problem.

Submission Requirements
(1) Submit LZWCompression.java and any other Java files that are required by LZWCompression.java to the digital drop box.

(2) Submit a single page to blackboard that describes how your program is working on ASCII files and on binary files. Explain whether your program works for both cases and state the degree of compression obtained for each?

90-723 Data Structures and Algorithms

Page 1 of 5

