95-771 Data Structures and Algorithms Carnegie Mellon University

95-771 Data Structures and Algorithms Homework 1

Due: Monday, January 24, 2011, 11:59:59 PM

Attached are abbreviated Javadoc specifications for two classes, DoubleNode.java and DoublyLinkedList.java.

You have seen how singly linked lists work in class. A singly linked list consists of a series of nodes linked together via pointers. Each node has a next pointer which points to the next node in the list. The next pointer of the last node in the list is set to null.

A doubly linked list is similar to a singly linked list, however in a doubly linked list each node also contains a previous pointer, which points to the previous node in the list. The previous pointer of the node at the head of the list is set to null. The next pointer of the last node is set to null.

Following the Javadoc specifications given, you are to write implementations of DoubleNode and DoublyLinkedList. You need to use the exact same names as those provided so that your classes may be included in our test driver. You should begin by writing only the method signatures and Javadoc comments for each class. You should then generate Javadoc specifications for your classes similar to those attached. You are required to include pre- and post-conditions in your Javadoc for each method. After that, you should write your own implementation for each of the methods.

A simple test driver that you are required to use is provided below.

Submit the following as a single zipped project to the Assignment Section of Blackboard:

1. DoubleNode.java and DoublyLinkedList.java, containing your Java source for these classes.

2. Javadoc for each class and method. This Javadoc must contain each method’s best and worst case run time complexity. This must be expressed using big theta. If you are not able to determine the best and worst case run time complexity, explain why. Again, the Javadoc will contain pre- and post conditions for each method.

3. A screen scrape showing the output of the main program shown below.

Grading:

 Working code passing the test driver: 70%

 Javadoc describing worst and best case big theta values and pre- and post-conditions: 20%

 Overall presentation: 10%

Test Driver

public static void main(String a[]) {

DoublyLinkedList list = new DoublyLinkedList();

list.addCharAtEnd('H');

list.addCharAtEnd('e');

list.addCharAtEnd('l');

list.addCharAtEnd('l');

list.addCharAtEnd('o');

System.out.println(list);

System.out.println("Deleting l");

list.deleteChar('l');

System.out.println(list);

System.out.println("Deleting H");

list.deleteChar('H');

System.out.println(list);

System.out.println("Deleting o");

list.deleteChar('o');

System.out.println(list);

System.out.println("Deleting e");

list.deleteChar('e');

System.out.println(list);

System.out.println("Deleting l");

list.deleteChar('l');

System.out.println(list);

list.addCharAtFront('o');

list.addCharAtFront('l');

list.addCharAtFront('l');

list.addCharAtFront('e');

list.addCharAtFront('H');

System.out.println(list);

System.out.println(list.countNodes());

System.out.println("Popping everything");

while(!list.isEmpty()){

System.out.println(list.removeCharFromFront());

}

list.addCharAtFront('o');

list.addCharAtFront('l');

list.addCharAtFront('l');

list.addCharAtFront('e');

list.addCharAtFront('H');

System.out.println("Popping everything from the end");

while(!list.isEmpty()){

System.out.println(list.removeCharAtEnd());

}

System.out.println(list.countNodes());

list.addCharAtEnd('o');

list.addCharAtEnd('l');

list.addCharAtEnd('l');

list.addCharAtEnd('e');

list.addCharAtEnd('H');

list.reverse();

System.out.println(list);

list.reverse();

System.out.println(list);

}
PAGE
2

