95-733 Internet Technologies

Carnegie Mellon University

Lab 4 Due May 3, 2001

In this lab you will work with XML, JDBC, servlets and JavaMail. The idea is to complete several parts of the web application described in the figure below. This application and the figure below is from the text “XML and Java” by Maruyama, Tamura, and Uramoto, Addison-Wesley.

[image: image1.wmf]XML

Mobile users

PC users

Http://www.

xweather

.com

WeatherReport

application

WML

HTML

PowerWarning

application

Application

programs

XML

Email notifications

Registrations

XML

XSLT

(1) Write an HTML file called ModifyWeather.html that requests a city name and a new temperature for the city. The submit button on this HTML page should run a servlet called ModifyWeather.java.

(2) Write a servlet in Java called ModifyWeather.java that accepts a post request from ModifyWeather.html. This servlet should modify the temperature associated with a particular city by calling on the services of a shared object called AccessDB.java.

(3) Write a singleton class called AccessDB.java that accesses a simple Microsoft Access database. This database will consist of a single table called weather and will be found in the file weather.mdb. Its first field (City, the primary key) contains the city name and its second field (Temperature) contains the city’s temperature. The class AccessDB.java will contain the following two public methods:

/* Given the city return the temperature */

 public String getTemperature(String location)

/* The database temperature is updated for this location */

 public void setTemperature(String location, String Temperature)

These methods will make use of JDBC to make queries and updates to the weather database.

The initial database contents will look like the following:

Pittsburgh
76

San Diego
74

Chicago

55

New York
80

London

78

(4) Write a second servlet called AccessWeather.java. This servlet generates a dynamic XML document based on the contents of the database for a particular city at a particular moment. The city name is passed a request parameter. An object of class Watcher (see the course slides) will be making periodic calls on the AccessWeather servlet. A call from within the Watcher object will look exactly like the following:

String weatheruri = "http://localhost:8001/servlet/AccessWeather/?City="

 + URLEncoder.encode(this.city);

An example string returned by this servlet would look like the following (but with no “return” characters):

 <?xml version="1.0" encoding="UTF-8"?>

 <WeatherReport>

 <City>Pittsburgh</City>

 <CurrTemp Unit = "Farenheit">2</CurrTemp>

 </WeatherReport>

The XML document returned by this HTTP request must have the form expressed in this DTD:

 <?xml version="1.0" encoding="utf-8"?>

 <!ELEMENT WeatherReport (City, CurrTemp)>

 <!ELEMENT City (#PCDATA)>

 <!ELEMENT CurrTemp (#PCDATA)>

 <!ATTLIST CurrTemp Unit (Farenheit, Celsius)>

Your program does not need to do validation but you should only generate XML that conforms to this DTD.

(5) Write a class called Mailer that uses JavaMail to support the following method: (this method found within each Watcher object:

 public void warning() {

System.out.println("Sending email");

 Mailer mailman = new Mailer(this.user,

 "your-id@andrew.cmu.edu", "It's hot");

mailman.send();

}

The Mailer class has a constructor with the following prototype:

public Mailer(String to, String from, String msg)

where to and from are both e-mail addresees.

Submission Details

Your software will be expected to work with the software on the Week 5 slides. That is, you should have a working system and it should involve all of the files below. If you or I find errors in the code provided on the slides (not intentional on my part) then I’m afraid those errors have to be your responsibility. It’s up to you whether you rewrite all or some of the code from the slides. In either case, for grading purposes, please conform to the file names stated on this lab and mentioned in the slides. Please note that you must submit ALL these files. You must submit those from the slides as well as your own. The grader will be asked to build these back into a working system. If that task is overly difficult, you will lose points.

Please submit a large envelope containing an otherwise blank floppy disk with the following files. Also, please include paper copies of ALL of these files. Your name should be written on the disk, envelope, and also at the top of each file.

Files that you write

==============

 ModifyWeather.html (HTML file)

 ModifyWeather.java (servlet)

AccessDB.java (singleton)

weather.mdb (database)

AccessWeather.java (servlet producing XML)

Mailer.java (a Java class that abstracts away the deatails of JavaMail)

Files that are provided on the slides but which you must still submit

===

Registrations.html (HTML File)

PowerWarn.java (servlet that registers users)

Scheduler.java (Java class that calls the watchers)

Watcher.java (Java class that makes HTTP request for weather information in XML)

 You must modify this fileso that it references AccessWeather.java

 with a database query rather than accessing a static file with

 GetWeather/Weather.xml)

Some Notes On JDBC

Creating an ODBC Connection

•Click on the Start button.
•Choose Settings, Control Panel

•Double-click on ODBC Data Sources

•Choose the System DSN tab

•Click Add

•Click on the desired driver (MSAccess)
•Click on the Finish button

•Enter a Data Source Name (we will call it weather)
•Click on the Select button

•Locate the desired file or directory

•Click OK

Establish a connection from Java with

 DriverManager.registerDriver(new sun.jdbc.odbc.JdbcOdbcDriver());

 connection = DriverManager.getConnection("jdbc:odbc:weather");

 System.out.println("Initialization of DBAccess Singleton");

Consult any good Java book to see how to make SQL queries.

Some Notes On JavaMail
/* A demonstration of java mail from Gary Alperson.

1. Download the JavaMail API Implementation Version 1.2 at

http://java.sun.com/products/javamail/index.html

2. Download the JavaBeans Application Framework (JAF) at:

http://java.sun.com/products/javabeans/glasgow/jaf.html

3. Unzip both files.

4. Add the following files to your classpath:

mail.jar (JavaMail)

activation.jar (JAF file)

*/

import java.io.*;

import java.net.InetAddress;

import java.util.Properties;

import java.util.Date;

import javax.mail.*;

import javax.mail.internet.*;

public class MessageSend {

public static void main(String[] args) {

MessageSend send = new MessageSend();

Session sess = send.createSession();

try {

Message mess = send.createMessage(sess, "Temperature too high");

Transport.send(mess);

}

catch(MessagingException e) {

System.out.println("Messaging Exception: "+e);

}

}

public Session createSession() {

Properties p = System.getProperties();

p.setProperty("mail.transport.protocol", "smtp");

p.setProperty("mail.smtp.host","andrew.cmu.edu");

Session sess = Session.getDefaultInstance(p);

return sess;

}

public Message createMessage(Session sess, String msg)throws MessagingException{

Message mess = new MimeMessage(sess);

mess.setFrom(new InternetAddress("from-ID@andrew.cmu.edu"));

 mess.setRecipients(Message.RecipientType.TO,

InternetAddress.parse("to-ID@andrew.cmu.edu", false));

mess.setSubject("Power Warning");

mess.setText(msg);

mess.setSentDate(new Date());

return mess;

}

}

�

PAGE
1

