95-733 Internet Technologies Carnegie Mellon University

Internet Technologies Homework 2 Due Tuesday,
 November 22, 2005

Lab Topics: Extensible Style Sheet Language for Transformations (XSLT), Wireless Markup Language (WML), Introductory Web Ontology Language (OWL)
In this lab we will be programming in a transformation language called XSLT. XSLT is used to transform an XML document into another XML document (with a different structure). In order to write programs in XSLT, we need an XML parser (XSLT programs are XML documents) and an XSLT interpreter. The parser is called “Xerces”. The interpreter is called “Xalan” (Xalan uses Xerces). We have downloaded and installed both of these in an earlier lab.
In Part I you will test the installation. In Part II you will experiment with using XSLT from within a Java program. Finally, in Part III, you will be asked to write several XSLT programs and servlets. The XSLT will be used to generate a WML document for a mobile phone. You will also be asked to perform a simple transformation to the OWL documents discussed in class.

You are required to use the same names as used here for files and directories. Otherwise, the lab will be very difficult to grade and it will be harder for me to give you help.

Part I Experimenting with XSLT

1) You will need to create a batch file so that you can type a simple command like “xalan f1.xml f2.xsl f3.wml”. This command shows an XML document being transformed by an XSLT program. The result is a WML (Wireless Markup Language) document.

Place the following file (xalan.bat) in a directory called c:\batch.

Contents of c:\batch\xalan.bat

java org.apache.xalan.xslt.Process –IN %1 -XSL %2 -OUT %3

Place the new directory, c:\batch, in the path variable so that the command interpreter knows where to look for DOS commands. This can be done on an NT machine by choosing start/settings/control panel/system/environment and changing the system variable “path” to include c:\batch.

Figure 2.1 is an xml file called books.xml that contains data on books. It’s a copy of the file found on Page 70 of the XSLT Programmer’s Reference by Michael Kay.

<?xml version="1.0"?>

<books>

<book category="reference">

<author>Nigel Rees</author>

<title>Sayings of the Century</title>

<price>8.95</price>

</book>

<book category="fiction">

<author>Evelyn Waugh</author>

<title>Sword of Honour</title>

<price>12.99</price>

</book>

<book category="fiction">

<author>Herman Melville</author>

<title>Moby Dick</title>

<price>8.99</price>

</book>

<book category="fiction">

<author>J. R. R. Tolkien</author>

<title>The Lord of the Rings</title>

<price>22.99</price>

</book>

</books>

	 Figure 2.1

Figure 2.2 is an xslt program called booklist.xsl that converts the xml tree derived from Figure 2.1 into a new tree as shown in Figure 2.3.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="books">

<html>

 <body>

 <h1>A list of books</h1>

<table width="640">

 <xsl:apply-templates/>

 </table>

 </body>

 </html>

</xsl:template>

<xsl:template match="book">

<tr>

 <td>

 <xsl:number/>

 </td>

 <xsl:apply-templates/>

 </tr>

</xsl:template>

<xsl:template match="author | title | price">

<td>

 <xsl:value-of select="."/>

 </td>

</xsl:template>

</xsl:stylesheet>

 Figure 2.2

Place the two files in a directory and make sure that xalan is working properly by running the following command. The output file should look like Figure 2.3 (result.html).

xalan books.xml booklist.xsl result.html

When debugging XSLT programs, it is often more helpful to view your output in an editor like Notepad than to view your output in a browser like Netscape. Look at the HTML document in Netscape only after you are satisfied with the way it looks in Notepad.

<html>

<body>

<h1>A list of books</h1>

<table width="640">

<tr>

<td>1</td>

<td>Nigel Rees</td>

<td>Sayings of the Century</td>

<td>8.95</td>

</tr>

<tr>

<td>2</td>

<td>Evelyn Waugh</td>

<td>Sword of Honour</td>

<td>12.99</td>

</tr>

<tr>

<td>3</td>

<td>Herman Melville</td>

<td>Moby Dick</td>

<td>8.99</td>

</tr>

<tr>

<td>4</td>

<td>J. R. R. Tolkien</td>

<td>The Lord of the Rings</td>

<td>22.99</td>

</tr>

</table>

</body>

</html>

	 Figure 2.3

Part II Running Xalan from within Java

In Figure 2.4 we have a Java program that uses Xalan (and Xerces) to perform the same transformation we did above from the command line. Later in this lab, we will use this technique to perform transformations through a servlet. Please make sure that you are able to run this program producing the file “out.html”.
	// ProduceHTML.java is a simple program that demonstrates how XSLT programs

// can be executed from within Java.

import java.io.IOException;

import java.io.OutputStream;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import javax.xml.transform.Source;

import javax.xml.transform.stream.StreamSource;

import javax.xml.transform.stream.StreamResult;

import javax.xml.transform.Result;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerException;

public class ProduceHTML {

 public static void main(String a[]) {

 Source xmlDoc, xslDoc;

 Result result;

 try {

 FileInputStream xml = new FileInputStream("books.xml");

 FileInputStream xsl = new FileInputStream("booklist.xsl");

 FileOutputStream out = new FileOutputStream("out.html");

 xmlDoc = new StreamSource(xml);

 xslDoc = new StreamSource(xsl);

 result = new StreamResult(out);

 TransformerFactory factory = TransformerFactory.newInstance();

 Transformer trans = factory.newTransformer(xslDoc);

 trans.transform(xmlDoc,result);

 }

 catch(TransformerException e) {

 System.out.println("Transformer Probem" + e);

 }

 catch(IOException e) {

 System.out.println("An I/O problem");

 }

 }

}

	 Figure 2.4

Homework 2 Activities Sheet

Directions: Complete the activities listed on this sheet and type or paste your answers directly in the space provided. The Activities Sheet must be submitted as a single Microsoft Word document. It must be called Lab2Submission.doc. Only turn in the Lab2 Activities Sheet portion of this document. Please don’t submit Part I or Part II.
(1) 5 Points. Write an XSLT style sheet that displays all of the attribute values in the book.xml file (Figure 2.1). The html, when displayed in a browser, should like the following:

[image: image1.png]etscape.

[_[CIx]

Fle Edt View Go Commuricalor Help

R - TG S = S
Gl Foued Reoed Home Seach Nebwowe P Seouiy Giop
7| Bookmaks. i Locaioni[oCarty/wwn/ 55733 /eramples okl =] @ Whats Rilated
7| Alrstnt Messoge [Webiai (5 Contoct (8 Peope (5 velowPoges [Downioss [F

The category of each book

1 reference

2 fction

3 fction

4 fction
Kl | o
== [Document: Done e Y P B 2| 4

(a) Paste the XSLT program here.

(b) Paste the HTML file here.

(2) 5 Points. Write an XSLT style sheet that displays all of the authors in the book.xml file. The html, when displayed in a browser, should like the following:

[image: image2.png]etscape.
Fle Edt View Go Commuricalor Help

[_[CIx]

& ¥ 3 4 2 m

Boci o Rekad Home Seach Melsoape

<+ & @

Fint Secuiy S

7| Bokmake s Locaton[ie:///CMcCarty /57 enamplesresut il])" Whats Related

% RintonMessoge (5 Webal [Cortast_ 8 People) YelowFoges [5) Downoad [Fidies |

The Authors of each book

1 Nigel Rees
2 Evelyn Wangh
3 Herman Melville
4 IR R Tolkien
Kif |

== [Document: Done

N =

(a) Paste the XSLT program here.

(b) Paste the HTML file here.

(3) 10 Points. Write an XSLT style sheet that displays all of the data in the book.xml file sorted by title. The html, when displayed in a browser, should look like the following:

[image: image3.png][[_[CIx]

File Edt View Go Communicator Help
¢ ¥ A 4 a < & @
Gil i Rebosd Home Seach Netospe Pt Ssouty o
7| Bookmake 4 Locaton[e:///CMcCarty mwn 57 evampteshesu i [v] @ Whets Relted

7| R intent Message |5 WebMai [Contact (8] People |5 Yellon Poges [Dowrload [5) FindSies (4 Ce
Book Data Sorted by Title

Herman Melville Moby Dick 8.99
Nigel Rees Sayings of the Century 8.95
Evelyn Wangh Sword of Honour 1299
IR R Tolkien ‘The Lord of the Rings 22.99

Kif
== [Document: Done

(a) Paste your XSLT program here.

 (b) Paste your HTML file here.

The following xml file describes courses available from a computer science department at a fictional university. This file is called Course_Descriptions.xml.

<?xml version="1.0"?>

<Course_Descriptions>

 <Course>

 <Course-ID id="Math100"/>

 <Title>Algebra I</Title>

 <Description> Students in this course study introductory algebra.

 </Description>

 <Prerequisites/>

 <Instructor>

 <Name> Adam Bell </Name>

 <Office> 100 CL4</Office>

 <Email> ab@duke.edu </Email>

 <Phone> 412-111-1122 </Phone>

 </Instructor>

 </Course>

 <Course>

 <Course-ID id = "Geom100"/>

 <Title>Geometry I</Title>

 <Description> Students in this course study how to prove several

 theorems in geometry.

 </Description>

 <Prerequisites/>

 </Course>

 <Course>

 <Course-ID id="Calc100"/>

 <Title>Calculus I</Title>

 <Description> Students in this course study the derivative.

 </Description>

 <Prerequisites pre="Math100 Geom100" />

 <Text>

 <Text-Title> Introduction to The Calculus </Text-Title>

 <Text-ISBN> 0-201-43315-X </Text-ISBN>

 <Text-Pub> Addison Wesley Longman </Text-Pub>

 </Text>

 <Text>

 <Text-Title> Using MathMatica </Text-Title>

 <Text-ISBN> 0-245-48815-X </Text-ISBN>

 <Text-Pub> Wolfgram Software </Text-Pub>

 </Text>

 </Course>

 <Course>

 <Course-ID id = "Calc200" />

 <Title>Calculus II</Title>

 <Description> Students in this course study the integral.

 </Description>

 <Prerequisites pre="Calc100" />

 <Text>

 <Text-Title> Introduction to The Calculus </Text-Title>

 <Text-ISBN> 0-201-43315-X </Text-ISBN>

 <Text-Pub> Addison Wesley Longman </Text-Pub>

 </Text>

 </Course>

 <Course>

 <Course-ID id = "Calc300" />

 <Title>Calculus III</Title>

 <Description> Students in this course study the derivative and

 the integral (in 3-space).

 </Description>

 <Prerequisites pre="Calc200" />

 <Instructor>

 <Name> Ellen Bell </Name>

 <Office> 104 Jones </Office>

 <Email> Eb@duke.edu </Email>

 <Phone> 412-344-5612 </Phone>

 </Instructor>

 <Text>

 <Text-Title> Introduction to The Calculus </Text-Title>

 <Text-ISBN> 0-201-43315-X </Text-ISBN>

 <Text-Pub> Addison Wesley Longman </Text-Pub>

 </Text>

 </Course>

 <Course>

 <Course-ID id = "CS1" />

 <Title>Introduction to Computer Science I</Title>

 <Description> In this course we study Turing machines.

 </Description>

 <Prerequisites pre="Calc100" />

 </Course>

 <Course>

 <Course-ID id = "CS2" />

 <Title>Introduction to Computer Science II</Title>

 <Description> In this course we study basic data structures.

 </Description>

 <Prerequisites pre="Calc200 CS1"/>

 </Course>

 <Course>

 <Course-ID id = "Philo45" />

 <Title>Ethical Implications of Information Technology</Title>

 <Description> In this course we will study the impact of XML

 on life.

 </Description>

 <Prerequisites/>

 <Instructor>

 <Name> Susan Smith </Name>

 <Office> 102 Smith Hall </Office>

 <Email> suem@duke.edu </Email>

 <Phone> 412-344-2121 </Phone>

 </Instructor>

 <Text>

 <Text-Title> The XML Bible </Text-Title>

 <Text-ISBN> 1-833-93399-X </Text-ISBN>

 <Text-Pub> Addison Wesley Longman </Text-Pub>

 </Text>

 <Text>

 <Text-Title> The Human Use of Human Beings </Text-Title>

 <Text-ISBN> 4-833-93445-X </Text-ISBN>

 <Text-Pub> Addison Wesley Longman </Text-Pub>

 </Text>

 </Course>

</Course_Descriptions>

(4) 50 Points. Write a Java servlet, Courses.java, that uses Xalan to call on four different XSLT programs to provide four different views of the data contained in Course_Descrptions.xml. From within your servlet, you will need to read the course descriptions file and the corresponding stylesheet with code like this:
ServletContext context = getServletContext();
String extraPath;

String contentType;

extraPath = null;

if(req.getPathInfo() != null) {

 extraPath = req.getPathInfo();

 extraPath = extraPath.substring(1);

}

if(extraPath.equals("Wireless"))
 contentType = "text/vnd.wap.wml";

else

 contentType = "text/html";

res.setContentType(contentType);

PrintWriter out = res.getWriter();

Source xmlDoc;

Source xslDoc;

Result result;

String styleSheetName = extraPath;

try {

 InputStream xml =

 (InputStream)(context.getResourceAsStream("/Course_Descriptions.xml"));

 InputStream xsl =
 (InputStream)(context.getResourceAsStream("/"+styleSheetName + ".xsl"));

 xmlDoc = new StreamSource(xml);

 xslDoc = new StreamSource(xsl);

 result = new StreamResult(out);

 TransformerFactory factory = TransformerFactory.newInstance();

 Transformer trans = factory.newTransformer(xslDoc);

 trans.transform(xmlDoc,result);
The servlet should find your xml and xslt files in the web application’s web directory. Your build.properties files will refer to books and your web.xml file will refer to Courses.
The user of the browser will select the particular XSLT program that is executed by the servlet.
The first XSLT program that you will write, titles.xsl, processes the Course_Descriptions.xml file and generates a list of course titles marked up nicely in HTML.
The second XSLT program, texttitles.xsl, processes the Course_Descriptions.xml file and generates a list of textbook titles marked up nicely in HTML.
The third XSLT program, ISBN.xsl, processes the Course_Descriptions.xml file and generates a list of textbook ISBN numbers marked up nicely in HTML (with numbering as shown below).
Finally, write an XSLT program called wireless.xsl that generates the entire document in WML. Information about the proper format of WML documents can be found at http://www.wirelessdevnet.com/channels/wap/training/. You need not become an expert at WML. You do need to master enough WML to program simple document navigation on a phone.

In the WML case, The servlet should set the response object’s content type to text/vnd.wap.wml. This HTTP content type header should be set before you access a PrintWriter from the response object. In the other three cases the content type should be set as text/html. See the code above for how this can be done.
Note that you need not provide an HTML front end (index.html). The view that the user is interested in is accessed from within the servlet with the getPathInfo() method of the HttpServletRequest object. In order to do this, you must use “/Courses/*” in your web.xml file.
The user (browser) will be able to select which view it wants as follows:

http://localhost:8080/books/Courses/titles The servlet gets Course Titles

http://localhost:8080/books/Courses/texts The servlet gets Text Book Titles

http://localhost:8080/books/Courses/isbn The servlet gets ISBN numbers

 http://localhost:8080/books/Courses/wireless The servlet gets the whole document in

 WML. In this case the browser is a phone simulator.

The phone simulator must be downloaded from the following URL: http://developer.openwave.com/dvl/tools_and_sdk/openwave_mobile_sdk/phone_simulator/choosing.htm
Select the sdk3.2 SDK and then choose “HDML 3.0 – Windows”.
The phone simulator will act as your browser when requesting the data marked up in WML. Experiment with the simulator. Note that you can set the language the phone accepts (English, Spanish, etc.). Note that you can also view the arriving source via the “info” menu. You can configure the look and feel of your phone with the File/Open Configuration option. Set your phone configuration to “mits_cdpd.pho”. You can also set the Home URL using the Settings/UP.Link settings. My settings look as follows:

[image: image4.png]Settings

1fyou choose the HTTP Ditect option, the phone wil communicate diectly with
the HTTP server, bypassing any UPLink.

& HTTP Ditect

Home Ui [cslost 060 kst et ses Wieess

& NoHTTP Prowy

 Prow: Fott
Request Timeaut [30_¥] secands.

‘AnUPLink can be referenced by 3 numeiic P address or by 3 domain name.
Connest thiough UPLink.

€ UPLink 1: [devaateZ uplanetcom

€ UPLink2: [devateZ uplanetcom

C UPLink 3 [devaateZ uplanetcom

W] Carcel

The three browser screens below show solutions for the titles, isbn and wireless problems in Netscape and the phone simulator. For the first two cases your browser must look exactly the same as these. Note how the ISBN’s are numbered.
The third case is almost finished but you must complete it. Currently, it does not allow the user to navigate from one course to the next. The WML document that was generated by the servlet is shown below the screen of the phone. Your solution must allow for simple navigation from one course to the next. So, your WML will contain the appropriate <go href=”location”> tags. The first course (WML card) must allow navigation to the second course and so on. The last course must allow navigation back to the first. This should not be hardcoded in the XSLT program. In other words, the same XSLT program will work with various course description files.
A visit by Netscape to the servlet selecting titles:

[image: image5.png]¥ Netscape

A list of Course Titles

Algebral
Geometry I

Calenus T

Caleuus I

Calculos T

Tntroduction to Computer Science T
Tntroduction to Computer Science I

Ettical Implications of Information Technology

 A visit by Netscape to the servlet selecting ISBN numbers (note how the numbers increase when a course has more than one book):

[image: image6.png]DD T ———————
File Edit View Go Commuricator Help

v ¥ A 4 a2 W@ S & #
Back i Rebsd Home Seach Netospe Pt Sseuty o
7| " Bokmaike s Locatone [t ocalhoscB00T/seret Couses/ibn =] @ Whats Related

% Rt Messoge 8 Webhal 3 Coniect 5 Pocple 3 velowPages (5] Downoad 8 FindSies (4 Cromels) AeaPiye

A list of ISBN's

Caleulus T 1 0-201-43315X
Caleulus T 2 0-245-48815-X
Caleulys T 1 0-201-43315X
Caleulys I 1 0-201-43315X
Ethical Implications of Information Technology 1 1-833-93399-X
Ethical Implications of Information Technology 2 4-833-93445.X

== [Document: Done

 A visit by a phone simulator (mits_cdpd) to the servlet selecting a wireless description:

[image: image7.png]:dpd - UP.Simulator
Fle Info Edit Setings Help

6o [Pt localhost 3080 books/serviel/Cou]

POWER

The WML document fetched by the phone (with whitespace added for readability) is shown below. Your solution must allow for simple course-to-course navigation and so while this works, it is incomplete.

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN" "http://www.wapforum.org/DTD/wml.xml">

<wml>

 <card>

 <p>Course ID: Math100</p>

 <p>Title: Algebra I</p>

 <p>Description: Students in this course study introductory algebra.

 </p>

 <p>Prerequisites: </p>

 <p>Instructor:

 Adam Bell

 100 CL4

 ab@duke.edu

 412-111-1122

 </p>

 </card>

 <card>

 <p>Course ID: Geom100</p>

 <p>Title: Geometry I</p>

 <p>Description: Students in this course study how to prove several

 theorems in geometry.

 </p>

 <p>Prerequisites: </p>

 </card>

 <card>

 <p>Course ID: Calc100</p>

 <p>Title: Calculus I</p>

 <p>Description: Students in this course study the derivative.

 </p>

 <p>Prerequisites: Math100 Geom100</p>

 <p>Text:

 Introduction to The Calculus

 0-201-43315-X

 Addison Wesley Longman

 </p>

 <p>Text:

 Using MathMatica

 0-245-48815-X

 Wolfgram Software

 </p>

 </card>

 <card>

 <p>Course ID: Calc200</p>

 <p>Title: Calculus II</p>

 <p>Description: Students in this course study the integral.

 </p>

 <p>Prerequisites: Calc100</p>

 <p>Text:

 Introduction to The Calculus

 0-201-43315-X

 Addison Wesley Longman

 </p>

 </card>

 <card>

 <p>Course ID: Calc300</p>

 <p>Title: Calculus III</p>

 <p>Description: Students in this course study the derivative and

 the integral (in 3-space).

 </p>

 <p>Prerequisites: Calc200</p>

 <p>Instructor:

 Ellen Bell

 104 Jones

 Eb@duke.edu

 412-344-5612

 </p>

 <p>Text:

 Introduction to The Calculus

 0-201-43315-X

 Addison Wesley Longman

 </p>

 </card>

 <card>

 <p>Course ID: CS1</p>

 <p>Title: Introduction to Computer Science I</p>

 <p>Description: In this course we study Turing machines.

 </p>

 <p>Prerequisites: Calc100</p>

 </card>

 <card>

 <p>Course ID: CS2</p>

 <p>Title: Introduction to Computer Science II</p>

 <p>Description: In this course we study basic data structures.

 </p>

 <p>Prerequisites: Calc200 CS1</p>

 </card>

 <card>

 <p>Course ID: Philo45</p>

 <p>Title: Ethical Implications of Information Technology</p>

 <p>Description: In this course we will study the impact of XML

 on life.

 </p>

 <p>Prerequisites: </p>

 <p>Instructor:

 Susan Smith

 102 Smith Hall

 suem@duke.edu

 412-344-2121

 </p>

 <p>Text:

 The XML Bible

 1-833-93399-X

 Addison Wesley Longman

 </p>

 <p>Text:

 The Human Use of Human Beings

 4-833-93445-X

 Addison Wesley Longman

 </p>

 </card>

</wml>

Phones typically have a small amount of memory and you will need to work within the memory constraint found on this particular simulator. Do not simply download a phone with a larger cache! Instead, you are required to reduce the amount of data that you are sending to the phone. Use XSLT to do this. It should also be noted that the document above had whitespace removed by XSLT before it was sent to the phone. This was accomplished with the following code in the XSLT program:

<!— This xslt program converts the course descriptions to WML. Wireless.xsl(
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0"

>

<xsl:output method = "xml"

 omit-xml-declaration = "no"

 doctype-public="-//WAPFORUM//DTD WML 1.1//EN"

 doctype-system="http://www.wapforum.org/DTD/wml.xml"

 />

<xsl:strip-space elements="*"/>

4. Paste a copy of your documented servlet called Course.java here.

 Paste a copy of your titles.xsl program here.

 Paste a screen of Netscape viewing titles here.

 Paste a copy of your texts.xsl program here.

 Paste a screen of Netscape viewing text titles here.

 Paste a copy of your isbn.xsl program here.

 Paste a screen of Netscape viewing ISBN numbers here.

 Paste a copy of your wireless.xsl program here.

 Paste several screens of a phone viewing courses here. These screen shots will show the user navigating

 among the courses.
(5) 15 Points. In this exercise you will build a small web application that distributes the Schedule.xml file (as shown below) to a phone in two languages. (You may add a third if you like.) If the phone is set for Spanish a servlet will select the appropriate stylesheet and display the schedule in Spanish, otherwise the schedule will be sent to the phone in English. You are required to read from the http request header to determine what language the phone accepts. You are also required to construct your two stylesheets in the following way and with the following names:

Spanishschedule.xsl imports schedule.xsl. The variables defined in spanishschedule.xsl will take precedence over those same variables defined in schedule.xsl. schedule.xsl contains the actual program logic that builds the WML document. It does this using a language neutral approach. That is, it uses variable values for the English text.

Spanishschedule.xsl is very simple. It sets some variable values and imports another stylesheet. It is shown below. These variables can be accessed by expressions like <xsl:value-of select = "$lang.available"/>.

<!-- spanishschedule.xsl --> <!—Use this stylesheet for Spanish speaking phones (
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0"

>

<!—schedule.xsl, on its own, handles English requests (
<xsl:import href="http://localhost:8080/EnEsPhone/schedule.xsl"/>
<xsl:output method = "xml"

 omit-xml-declaration = "no"

 doctype-public="-//WAPFORUM//DTD WML 1.1//EN"

 doctype-system="http://www.wapforum.org/DTD/wml.xml"

 />

<xsl:strip-space elements="*"/>

<!-- Isolate local specific content . These same variables are defined in schedule.xsl but in English. (
<xsl:variable name = "lang.monday" select="'Lunes'" />

<xsl:variable name = "lang.tuesday" select="'Martes'" />

<xsl:variable name = "lang.wednesday" select="'Miercoles'" />

<xsl:variable name = "lang.thursday" select="'Jueves'" />

<xsl:variable name = "lang.friday" select="'Viernes'" />

<xsl:variable name = "lang.saturday" select="'Sabado'" />

<xsl:variable name = "lang.sunday" select="'Domingo'" />

<xsl:variable name = "lang.available" select = "'tiempo disponible'" />

</xsl:stylesheet>

Below is the schedule file (Schedule.xml) and its DTD file (Schedule.dtd).
<?xml version="1.0" encoding = "utf-8"?>

<!DOCTYPE Schedule SYSTEM "http://localhost:8080/EnEsPhone/Schedule.dtd">

<Schedule>

 <Monday>

 <openSlot>A</openSlot>

 <openSlot>B</openSlot>

 </Monday>

 <Tuesday>

 <openSlot>B</openSlot>

 <openSlot>C</openSlot>

 </Tuesday>

 <Wednesday>

 <openSlot>B</openSlot>

 <openSlot>C</openSlot>

 </Wednesday>

 <Thursday>

 <openSlot>A</openSlot>

 </Thursday>

 <Friday>

 <openSlot>A</openSlot>

 <openSlot>C</openSlot>

 </Friday>

 <Saturday>

 <openSlot>A</openSlot>

 <openSlot>C</openSlot>

 </Saturday>

 <Sunday><openSlot>A</openSlot>

 </Sunday>

</Schedule>
<!ELEMENT Schedule (Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday)>

<!ELEMENT Monday (openSlot*)>

<!ELEMENT Tuesday (openSlot*)>

<!ELEMENT Wednesday (openSlot*)>

<!ELEMENT Thursday (openSlot*)>

<!ELEMENT Friday (openSlot*)>

<!ELEMENT Saturday (openSlot*)>

<!ELEMENT Sunday (openSlot*)>

<!ELEMENT openSlot (#PCDATA)>
Below is the phone being accessed for Spanish. (If your newly installed phone launches and then dies, try turning off all network settings first, launching again and resetting the IP address to localhost.)
[image: image8.png][-[O1x]

Fle Info Edit Setings Help

o [devicehame. |

5. Paste screen shots of your phone showing a user navigating the schedule in Spanish and in English. Also, paste

 three files here:

 spanishschedule.xsl

 schedule.xsl

 ScheduleHandler.java servlet

6. 15 Points. Write a servlet that collects the URL of an OWL document from an HTML form. The servlet will then fetch the OWL document and process it with an XSLT program that is local to the servlet. The XSLT program will traverse the OWL document looking for owl:Class, owl:ObjectProperty, and owl:DatatypeProperty tags. When it encounters such a tag it will generate HTML code that contains the value of the rdf:ID attribute. The two OWL documents that we reviewed in class and that you are required to process are located at www.andrew.cmu.edu/~mm6/ontology/wine.xml and www.andrew.cmu.edu/~mm6/ontology/food.xml. Hint: Use xalan from the command line to test your XSLT code before deploying it to the application server. Otherwise, it will be very hard to debug. My servlet contains the following code to access the XSLT and the XML:
 ServletContext context = getServletContext();

 // get the external OWL document using the URL

 Source xmlDoc = new StreamSource(url);

 // get the local xslt stylesheet

 InputStream xsl = (InputStream)(context.getResourceAsStream("/OWLExtract.xsl"));

 Source xslDoc = new StreamSource(xsl);

 // make the stream a result
 Result result = new StreamResult(out);

 TransformerFactory factory = TransformerFactory.newInstance();

 Transformer trans = factory.newTransformer(xslDoc);

 // write to the browser
 trans.transform(xmlDoc,result);

Paste three screen shots here. The first will show the HTML form collecting the URL from the user. The second and third will show the output generated by XSLT from the wine and food ontology documents.
Motivation for Lab 2
 This lab was motivated by the description (found in Goldfarb’s XML text) of IBM’s web site.

3

4

2

6

5

HTML doc

XSL & XML

XSL stylesheet

XML document

HTML doc

HttpRequest

 XSL

Processor

Web

Server

 1

Client

How does IBM manage a web site providing 2 gigabytes (about 70 Pittsburgh telephone books) of data?

1. Prior to any HTTP requests, an automated process

on the web server retrieves each XML document.

2. Each XML document is associated with one or more

XSL documents.

3. Each XML document is processed with one or more

of the XSL documents.

4. The HTML documents are cached.

5. An HTTP request comes in from the client.

6. The correct HTML document is sent to the client.

PAGE
14

