
95-733 Internet Technologies 1

Internet Technologies

IoT, Ruby on Rails and REST

IoT: Jeff Jaffe from W3C
• Consider a person’s watch (as an IoT device)
• It will participate in IoT wearable applications (since it is worn).
• It will participate in IoT medical applications (as it takes one’s pulse

and links into personal medical information).
• It will participate in IoT Smart Homes (used to control the home).
• It will contribute to IoT Smart Cities (as the municipal infrastructure relies on data

about weather and traffic).
• It will be used in IoT Smart Factories (to track its usage and condition).
• But to participate across all silos, and for applications to be built which

leverage all silos requires common data models, metadata, and an interoperable
layered model.

95-733 Internet Technologies 2

IoT : Where might Rails fit ?

See video at https://www.youtube.com/watch?v=4FtnvyH0qq4 3

Dumb devices

Smart devices

microcontroller Web server
(Rails, Java,
Javascript,
etc.)

Browser

TCP/IP

TCP/IP Webscockets/TCP/IP

95-733 Internet Technologies 4

Ruby on Rails

Material for this presentation was taken from
Sebesta (PWWW, course text) and “Agile
Web Development with Rails” by Ruby,
Thomas and Hansson, third edition.

95-733 Internet Technologies 5

Notes on Ruby From Sebesta's
"Programming The World Wide Web"
Ø Designed in Japan by Yukihiro Matsumoto
Ø Released in 1996
Ø Designed to replace Perl and Python
Ø Rails, a web application development

framework , was written in and uses Ruby
Ø Ruby is general purpose but probably the

most common use of Ruby is Rails
Ø Rails was developed by David Heinemeier

and released in 2004
Ø Basecamp (project management), GitHub

(web-based Git repository) are written in RoR

95-733 Internet Technologies 6

Ø To get started install rbenv or RVM (Ruby Version Manager)
Ø Use ri command line tool to browse documentation (e.g., ri

Integer).
Ø Use rdoc to create documentation (like Javadoc)
Ø Ruby is a pure object-oriented language.
Ø All variables reference objects.
Ø Every data value is an object.
Ø References are typeless.
Ø All that is ever assigned in an assignment statement is the

address of an object.
Ø The is no way to declare a variable.
Ø A scalar variable that has not been assigned a value has the

value nil.

General Notes on Ruby(1)

95-733 Internet Technologies 7

Ø Three categories of data types - scalars,
arrays and hashes

Ø Two categories of scalars - numerics and
character strings

Ø Everything (even classes) is an object.
Ø Numeric types inherit from the Numeric class
Ø Float and Integer inherit from Numeric
Ø Fixnum (32 bits) and Bignum inherit from

Integer
Ø All string literals are String objects
Ø The null string may be denoted as " or as '’”.
Ø The String class has over 75 methods

General Notes on Ruby(2)

95-733 Internet Technologies 8

Ø Ruby gems: “There is a gem for that”.
Ø A ruby gem provides functionality.
Ø May run on its own. A stand alone program. Rails is a gem.
Ø May be included in your code with require:
Ø require ‘aws/s3’ # to access Amazon Simple Storage Service
Ø require is the same as the c language’s include.
Ø How do you install a gem? From the command line enter:
Ø gem install GEM_NAME (usually from http://rubygems.org)
Ø gem install rails
Ø gem install jquery-rails
Ø gem install geocoder

General Notes on Ruby(3)

95-733 Internet Technologies 9

Interactive Environment

$irb
>> miles = 1000
=> 1000
>> milesPerHour = 100
=> 100
>> "Going #{miles} miles at #{milesPerHour} MPH takes #{1/milesPerHour.to_f*miles} hours"
=> "Going 1000 miles at 100 MPH takes 10.0 hours"

95-733 Internet Technologies 10

More interactive Ruby

$irb
>> miles = 1000
=> 1000
>> s = "The number of miles is #{miles}"
=> "The number of miles is 1000"
>> s
=> "The number of miles is 1000"

95-733 Internet Technologies 11

Non-Interactive Ruby
Save as one.rb and run with ruby one.rb

a = "hi"
b = a
puts a
puts b
b = "OK"
puts a
puts b

Output
======
hi
hi
hi
OK

95-733 Internet Technologies 12

References are Typeless

a = 4
puts a
a = "hello"
puts a

Output
=====
4
hello

95-733 Internet Technologies 13

C Style Escapes

puts "Hello\nInternet\tTechnologies”

Hello
Internet Technologies

95-733 Internet Technologies 14

Converting Case
a = "This is mixed case."
puts a.upcase
puts a
puts a.upcase!
puts a

THIS IS MIXED CASE.
This is mixed case.
THIS IS MIXED CASE.
THIS IS MIXED CASE.

95-733 Internet Technologies 15

Testing Equality(1)
b = "Cool course" == "Cool course" # same content
puts b
b = "Cool course".equal?("Cool course") #same object
puts b
puts 7 == 7.0 # same value
puts 7.eql?(7.0) # same value and same type

Output
======
true
false
true
false

95-733 Internet Technologies 16

Testing Equality(2)
a = "Ruby is cool."
b = "Ruby is cool."
c = b
if a == b

puts "Cool"
else

puts "Oops"
end
if c.equal?(b)

puts "Too cool"
else

puts "Big Oops"
end
if c.equal?(a)

puts "Way cool"
else

puts "Major Oops"
end

$ruby test.rb
Cool
Too cool
Major Oops

What’s the output?

95-733 Internet Technologies 17

Reading The Keyboard
puts "Who are you?"
name = gets #include entered newline
name.chomp! #remove the newline
puts "Hi " + name + ", nice meeting you."

Interaction
===========
Who are you?
Mike
Hi Mike, nice meeting you.

95-733 Internet Technologies 18

Reading Integers
#to_i returns 0 on strings that are not integers
puts "Enter two integers on two lines and I'll add them"
a = gets.to_i
b = gets.to_i
puts a + b

Interaction
===========
Enter two integers on two lines and I'll add them
2
4
6

95-733 Internet Technologies 19

Conditions with if
a = 5
if a > 4
puts "Inside the if"
a = 2

end
puts "a == " + a.to_s(10)

Output
======
Inside the if
a == 2

95-733 Internet Technologies 20

Conditions with unless
a = 5
unless a <= 4
puts "Inside the if"
a = 2

end
puts "a == " + a.to_s(10)

Output
======
Inside the if
a == 2

95-733 Internet Technologies 21

Conditions with if else
a = 5
if a <= 4
puts "Inside the if"
a = 2

else
puts "a == " + a.to_s(10)

end

Output
======

a == 5

95-733 Internet Technologies 22

Conditions with if/elsif/else
a = 5
if a <= 4
puts "Inside the if"
a = 2

elsif a <= 9
puts "Inside the elsif"

else
puts "Inside else”

end

Output
=====
Inside the elsif

95-733 Internet Technologies 23

Conditions with case/when
a = 5
case a
when 4 then
puts "The value is 4"

when 5
puts "The value is 5"

end

Output
======
The value is 5

95-733 Internet Technologies 24

Conditions with
case/when/elsea = 2

case a
when 4 then
puts "The value is 4"

when 5
puts "The value is 5"

else
puts "OK"

end

Output
======
OK

Statement Modifiers

95-733 Internet Technologies 25

Suppose the body of an if or while has a single statement.
Then, you may code it as:

puts "This is displayed" if 4 > 3
j = 0
puts j+1 if j == 0
j = j + 1 while j < 100
puts j

This is displayed
1
100

95-733 Internet Technologies 26

Case/When with Range
a = 4
case a
when 4 then
after a match we are done
puts "The value is 4"

when (3..500)
puts "The value is between 3 and 500"

else
puts "OK"

end

Output
======
The value is 4

95-733 Internet Technologies 27

Value of Case/When (1)
year = 2009
leap = case
when year % 400 == 0 then true
when year % 100 == 0 then false
else year % 4 == 0
end
puts leap

Output
======
false

95-733 Internet Technologies 28

Value of Case/When(2)
year = 2009
puts case
when year % 400 == 0 then true
when year % 100 == 0 then false
else year % 4 == 0
end

Output
======
false

What’s the output?

95-733 Internet Technologies 29

While
top = 100
now = 1
sum = 0
while now <= top

sum = sum + now
now += 1

end
puts sum

Output
======
5050

95-733 Internet Technologies 30

Until
j = 100
until j < 0
j = j - 1

end
puts j

Output
======
-1

95-733 Internet Technologies 31

Arrays(1)
a = [1,2,3,4,5]
puts a[4]
x = a[0]
puts x
a = ["To","be","or","not","to","be"]
j = 0
while j < 6

puts a[j]
j = j + 1

end

Output
======
5
1
To
be
or
not
to
be

95-733 Internet Technologies 32

Arrays(2)
a = [1,2,3,4,5]
j = 0
while j < 5

a[j] = 0
j = j + 1

end
puts a[1]

Output
======
0

95-733 Internet Technologies 33

Arrays(3)
somedays = ["Friday","Saturday","Sunday","Monday"]
puts somedays.empty?
puts somedays.sort

Output
======

false
Friday
Monday
Saturday
Sunday

95-733 Internet Technologies 34

Arrays(4)
a = [5,4,3,2,1]
a.sort!
puts a

What’s the output?

1
2
3
4
5

95-733 Internet Technologies 35

Arrays(5) Set Intersection &

a = [5,4,3,2,1]
b = [5,4,1,2]
c = a & b
puts c What’s the output?

5
4
2
1

95-733 Internet Technologies 36

Arrays(6) Implement a Stack

What’s the output?

x = Array.new
k = 0
while k < 5

x.push(k)
k = k + 1

end

while !x.empty?()
y = x.pop
puts y

end

4
3
2
1
0

95-733 Internet Technologies 37

Arrays and Ranges(1)
Create an array from a Ruby range

Create range
a = (1..7)
puts a

#create array
b = a.to_a
puts b

Output
======
1..7
1
2
3
4
5
6
7

95-733 Internet Technologies 38

Arrays and Ranges(2)
#Ranges are objects with methods
v = 'aa'..'az'
u = v.to_a
puts v
puts u

Output
======
aa..az
aa
ab
ac
:
:
aw
ax
ay
az

95-733 Internet Technologies 39

Arrays and Ranges(3)

a = 1..10;
b = 10..20
puts a
puts b
c = a.to_a & b.to_a
puts c

What is the output?

1..10
10..20
10

95-733 Internet Technologies 40

Hashes (1)
Hashes are associative arrays
Each data element is paired with a key
Arrays use small ints for indexing
Hashes use a hash function on a string

kids_ages = {"Robert" => 16, "Cristina" =>14, "Sarah" => 12, "Grace" =>8}
puts kids_ages

Output
======
Sarah12Cristina14Grace8Robert16

95-733 Internet Technologies 41

Hashes(2) Indexing

kids_ages = {"Robert" => 16, "Cristina" =>14, "Sarah" => 12, "Grace" =>8}
puts kids_ages["Cristina"]

Output
======
14

95-733 Internet Technologies 42

Hashes(3) Adding & Deleting

kids_ages = {"Robert" => 16, "Cristina" =>14, "Sarah" => 12, "Grace" =>8}
kids_ages["Daniel"] = 15
kids_ages.delete("Cristina")
puts kids_ages

Output
======
Daniel15Sarah12Grace8Robert16

95-733 Internet Technologies 43

Hashes (4) Taking The Keys
kids_ages = {"Robert" => 16, "Cristina" =>14, "Sarah" => 12, "Grace" =>8}
m = kids_ages.keys
kids_ages.clear
puts kids_ages
puts m

Output
======
Sarah
Cristina
Grace
Robert

95-733 Internet Technologies 44

Hashes (5)
grade = Hash.new
grade["Mike"] = "A+"
grade["Sue"] = "A-"
puts grade["Mike"]

What’s the output?

A+

95-733 Internet Technologies 45

Hashes with Symbols
(1) s = {:u => 3, :t => 4, :xyz => "Cristina" }

puts s[:xyz]
Cristina

(2) A Ruby symbol is an instance of the Symbol class.

(3) In Rails we will see..
<%= link_to("Edit", :controller => ”editcontroller", :action => "edit") %>

The first parameter is a label on the link and the second parameter is
a hash.

(4) The link_to method checks if the symbol :controller maps to a value and
if so, is able to find “editcontoller” . Same with :action.

Hashes and JSON (1)

95-733 Internet Technologies 46

This programs demonstrates how Ruby may be used to parse
JSON strings.
Ruby represents the JSON object as a hash.

require 'net/http'
require 'json'

Simple test example. Set up a string holding a JSON object.

s = '{"Pirates":{"CF" : "McCutchen","P" : "Bernett","RF" : "Clemente"}}'

Get a hash from the JSON object. Same parse as in Javascript.
parsedData = JSON.parse(s)

Hashes and JSON (2)

95-733 Internet Technologies 47

Display
print parsedData["Pirates"] # returns a Ruby hash
print "\n"
print parsedData["Pirates"]["P"] + "\n" #Bernett
print parsedData["Pirates"]["RF"] + "\n" #Clemente

Hashes and JSON (3)

95-733 Internet Technologies 48

Go out to the internet and collect some JSON from Northwind
require 'net/http'
require 'json'

url = "http://services.odata.org/Northwind/Northwind.svc/Products(2)?$format=json"

Make an HTTP request and place the result in jsonStr
jsonStr = Net::HTTP.get_response(URI.parse(url))
data = jsonStr.body

jsonHash = JSON.parse(data)

See if the product is discontinued
if (jsonHash["Discontinued"])

print jsonHash["ProductName"].to_s + " is a discontinued product"
else

print jsonHash["ProductName"].to_s + " is an active product"
end

A Digression: Check out
OData

95-733 Internet Technologies 49

Check out https://northwinddatabase.codeplex.com

What will this query do?
http://services.odata.org/Northwind/Northwind.svc/
Products(1)/Order_Details/?$format=json

What would you like to do with this data?
GET, PUT, DELETE, POST

The Northwind database is an Open Data Protocol (Odata)
implementation.
Odata is based on REST. What is REST?

95-733 Internet Technologies 5095-733 Internet Technologies 50

Open Data Protocol
• URL’s taken seriously
• Service Document exposes collections:

http://services.odata.org/V3/Northwind/Northwind.
svc/

• $metadata describes content (entity data model
types)

http://services.odata.org/V3/Northwind/Northwind.
svc/$metadata

• Each collection is like an RDBMS table

http://services.odata.org/V3/Northwind/Northwind.
svc/Customers 50

95-733 Internet Technologies 5195-733 Internet Technologies 51

Open Data Protocol
• Visit

http://services.odata.org/Northwind/Northwind.svc/
Products(1)/?$format=json

51

95-733 Internet Technologies 52

The OData API is RESTful
• Representational State Transfer (REST)
• Roy Fielding’s doctoral dissertation (2000)
• Fielding (along with Tim Berners-Lee)

designed HTTP and URI’s.
• The question he tried to answer in his thesis

was “Why is the web so viral”? What is its
architecture? What are its principles?

• REST is an architectural style – guidelines,
best practices.

Notes from “Restful Java with
JAX-RS, Bill Burke, Orielly

52

95-733 Internet Technologies 53

REST Architectural Principles
• The web has addressable resources.

Each resource has a URI.
• The web has a uniform and constrained interface.

HTTP, for example, has a small number of
methods. Use these to manipulate resources.

• The web is representation oriented – providing
diverse formats.

• The web may be used to communicate statelessly
– providing scalability

• Hypermedia is used as the engine of application
state.

53

95-733 Internet Technologies 54

Back to Ruby: Methods
Methods may be defined outside classes
to form functions or within classes to
form methods. Methods must begin with lower case
letters.
If no parameters then parentheses are omitted.

def testMethod
return Time.now

end

def testMethod2
Time.now

end

puts testMethod
puts testMethod2

Output
======
Tue Feb 10 22:12:44 -0500 2009
Tue Feb 10 22:12:44 -0500 2009

95-733 Internet Technologies 55

Methods Local Variables
def looper
i = 0
while i < 5

puts i
i = i + 1

end
end

looper

Output
======
0
1
2
3
4

What’s the output?

95-733 Internet Technologies 56

Scalers Are Pass By Value
#scalers are pass by value

def looper(n)
i = 0
while i < n

puts i
i = i + 1

end
end

looper(3)

Output
======
0
1
2

95-733 Internet Technologies 57

Parenthesis Are Optional
#scalers are pass by value

def looper(n)
i = 0
while i < n

puts i
i = i + 1

end
end

looper 3

Output
======
0
1
2

95-733 Internet Technologies 58

Passing Code Blocks (1)

Output
======
0
1
2
0
1
2
3

def looper(n)
i = 0
while i < n

yield i
i = i + 1

end
end

looper (3) do |x| puts x end
looper (4) {|x| puts x }

Think of the code
block as a method
with no name.

Only one code block
may be passed.

Use procs or
lambdas if you
need more.

95-733 Internet Technologies 59

Passing Code Blocks (2)

def looper
i = 0
n = 4
while i < n
yield i
i = i + 1

end
end

looper{|x| puts "Value #{x}" }

Think of the code
block as a method
with no name.

Value 0
Value 1
Value 2
Value 3

95-733 Internet Technologies 60

Passing Code Blocks (3)
def interest(balance)

yield balance
end

rate = 0.15
interestAmt = interest(1000.0) { |bal| bal * rate }
print "interest is #{interestAmt}"

rate = 0.12
total = interest(1000.0) { |bal| bal * (rate + 1.0)}
print "interest is #{total}"

What’s the output?

interest is 150.0interest is 1120.0

95-733 Internet Technologies 61

Passing Code Blocks (4)

Many Ruby methods take blocks.

[1,2,3,4,5].each {|x| puts "Doubled = #{x*2}"}

Doubled = 2
Doubled = 4
Doubled = 6
Doubled = 8
Doubled = 10

95-733 Internet Technologies 62

Passing Code Blocks (5)

Many Ruby methods take blocks.
Collect returns an array. What’s the output?

t = [1,2,3,4,5].collect {|x| x*2}
puts t
t = [1,2,3,4,5].collect do |x| x + 1 end
puts t

2
4
6
8
10
2
3
4
5
6

95-733 Internet Technologies 63

Passing Code Blocks (6)

XML Processing and XPATH predicates.

We want to read the schedule for this class.
For command line processing use ARGV[0] rather than hard coding the name.

require "rexml/document” # Ruby Electric XML comes with standard distribution
file = File.new("schedule.xml")
doc = REXML::Document.new(file)
doc.elements.each("//Slides/Topic[.='Ruby and Ruby On Rails']”) { |element| puts element }

<Topic>Ruby and Ruby On Rails</Topic>

Or Remotely

95-733 Internet Technologies 64

require "rexml/document"
require 'open-uri'
remoteFile = open('http://www.andrew.cmu.edu/user/mm6/95-733/schedule.xml') {|f| f.read }
doc = REXML::Document.new(remoteFile)
doc.elements.each("//Slides/Topic[.='Ruby and Ruby On Rails']") {|e| puts e }

95-733 Internet Technologies 6595-733 Internet Technologies 65

Passing Code Blocks(7)
integers are objects with methods that take code blocks.
4.times {puts "Yo!"}

Output
======
Yo!
Yo!
Yo!
Yo!

95-733 Internet Technologies 66

Arrays and Hashes Are Pass
By Reference

def coolsorter(n)
n.sort!

end

n = [5,4,3,2,1]
coolsorter(n)
puts n

Output
======
1
2
3
4
5

What’s the output?

95-733 Internet Technologies 67

Classes
Classes and constants must begin with
an uppercase character.
Instance variable begin with an "@" sign.
The constructor is named initialize

class Student
def initialize(n = 5)
@course = Array.new(n)
end
def getCourse(i)
return @course[i]

end
def setCourse(c,i)
@course[i] = c

end
end

individual = Student.new(3)
individual.setCourse("Chemistry", 0)
puts individual.getCourse(0)

Output
======
Chemistry

95-733 Internet Technologies 68

Simple Inheritance
class Mammal

def breathe
puts "inhale and exhale"

end
end

class Cat<Mammal
def speak

puts "Meow"
end

end

class Dog<Mammal
def speak

puts "Woof"
end

end

peanut = Dog.new
sam = Cat.new
peanut.speak
sam.speak
sam.breathe

Output
======

Woof
Meow
inhale and exhale

Ruby has no multiple inheritance.

95-733 Internet Technologies 69

Self makes a method a class
method. @@ is a class variable.

class Mammal
@@total = 0
def initialize

@@total = @@total + 1
end

def breathe
puts "inhale and exhale"

end
def self.total_created

return @@total
end

end

class Cat<Mammal
def speak

puts "Meow"
end

end
class Dog<Mammal

def speak
puts "Woof"

end
end
peanut = Dog.new
sam = Cat.new
peanut.speak
sam.speak
sam.breathe

puts Mammal.total_created

Woof
Meow
inhale and exhale
2

Public, Private and Protected

95-733 Internet Technologies 70

class Mammal
def breathe # method is public

puts "inhale and exhale"
end

protected
def move # method available to inheritors

puts "wiggle wiggle"
end

private
def sleep # private method

puts "quiet please"
end

end

class Cat<Mammal
def speak

move
puts "Meow"

end

end
class Dog<Mammal

def speak
move
puts "Woof"

end
end
peanut = Dog.new
sam = Cat.new
peanut.speak
sam.speak
sam.breathe

Duck Typing

95-733 Internet Technologies 71

class Duck
def quack
puts "Quaaaaaack!"

end

def feathers
puts "The duck has white and gray feathers."

end
end

class Person
def quack
puts "The person imitates a duck."

end From Wikipedia

Duck Typing (2)

95-733 Internet Technologies 72

def feathers
puts "The person takes a feather from the ground and shows it."

end
end

def in_the_forest duck # takes anything that quacks with feathers
duck.quack
duck.feathers

end

From Wikipedia

Duck Typing (3)

95-733 Internet Technologies 73

def game
donald = Duck.new
john = Person.new
in_the_forest donald
in_the_forest john

end

game

From Wikipedia

Reflection

95-733 Internet Technologies 74

class Dog
def bark

puts "woof woof"
end

def fur
puts "This dog likes you to pat her fur."

end
end

scout = Dog.new

if(scout.respond_to?("name"))
puts "She responds to name"

end
if(scout.respond_to?("bark"))

puts "She responds to bark"
puts scout.bark

end

She responds to bark
woof woof

Modules

95-733 Internet Technologies 75

Modules group together methods and constants.
A module has no instances or subclasses.
To call a module’s method, use the module name,
followed by a dot, followed by the name of the method.
To use a module’s constant, use the module name,
followed by two colons and the name of the constant.

Think “namespace”.

Modules

95-733 Internet Technologies 76

module Student
MAXCLASSSIZE = 105
class GradStudent
def work
puts "think, present, present,.."

end
def eat
puts "pizza"

end
def sleep
puts "zzzzz"

end
end

end
x = 6
mike = Student::GradStudent.new
mike.work if x <= Student::MAXCLASSSIZE

ruby onemodule.rb
think, present, present,..

Include this module with
require. Similar to Java’s
import or C’s #include.

Mixins

95-733 Internet Technologies 77

module SomeCoolMethods

def foo
puts "foo is running"

end

def foo2
puts "foo2 is running"

end

end

class CoolClass

include SomeCoolMethods

end
x = CoolClass.new
x.foo2

The methods of a
module become members
of a class. Think “multiple
inheritance” in Ruby.

If this were an external
module it would be ‘required’
first. Then ‘included’.

‘require’ is like C’s include.
‘include’ is used for mixins.

Ruby Supports Closures

95-733 Internet Technologies 78

A closure is a first class function with free variables
that are bound in the lexical environment.
(From Wikipedia)

Put another way: A closure is a method with two
properties:

1.It can be passed around and can be called at a later
time and

2. It has access to variables that were in scope at the
time the method was created.

From: Alan Skorkin’s “Closures – A simple explanation

Javascript has Closures Too!

79

function foo(x) {
return function() { alert("Hi " + x); }

}

var t = foo("Mike");
var m = foo("Sue");

t();
m();

Javascript has Closures Too!

80

<html>
<head>
<script type="text/javascript”>

// define printMessage to point to a function
var printMessage = function (s) {

alert("In printMessage() for " + s)
var f = function () {

alert(s + ' was pressed.');
}

return f;
}
// call function pointed to be printMessage
// with a parameter.
// A pointer to a function is returned.
// The inner function has a copy of s.
buttonA = printMessage('A')
buttonB = printMessage("B")
buttonC = printMessage("C”)

Closures in Javascript

95-733 Internet Technologies 81

</script>
<title>Closure example</title>

</head>

<body>

<!-- call the function pointed to by the variable -->
<button type="button" onClick = "buttonA()">A Button Click Me!</button>
<button type="button" onClick = "buttonB()" >B Button Click Me!</button>
<button type="button" onClick = "buttonC()" >C Button Click Me!</button>

</body>
</html>

What’s the output?

Closures in Javascript

95-733 Internet Technologies 82

On page load:
In printMessage() for A
In printMessage() for B
In printMessage() for C

Three buttons appear
Click A => “A was pressed”
Click B=> “B was pressed”

A Closure in Ruby

95-733 Internet Technologies 83

def foo (p)
p.call #call the proc

end

x = 24
#create a proc to pass
p = Proc.new { puts x }

foo(p)

x = 19
foo(p)

Note: x is not
within the scope
of foo.

Note: a reference
to x is used. Not
a value.

Note: It is easy to
pass two or more
procs. Only one
code block may be
passed.

Quiz: What’s the output?

A Closure in Ruby

95-733 Internet Technologies 84

def foo (p)
p.call #call the proc

end

x = 24
#create a proc to pass
p = Proc.new { puts x }

foo(p)

x = 19
foo(p)

24
19

Another Ruby Closure

95-733 Internet Technologies 85

class ACoolClass
def initialize(value1)
@value1 = value1

end
def set(i)

@value1= i
end
def display(value2)

lambda { puts "Value1: #{@value1}, Value2: #{value2}"}
end

end
def caller(some_closure)

some_closure.call
end
obj1 = ACoolClass.new(5)
p = obj1.display("some values")
caller(p)
p.call()
obj1.set(3)
p.call

Quiz: What’s the
output?

Lambdas are
procs but
with arity checking
and different return
semantics.

Another Ruby Closure (2)

95-733 Internet Technologies 86

class ACoolClass
def initialize(value1)
@value1 = value1

end
def set(i)

@value1= i
end
def display(value2)

lambda { puts "Value1: #{@value1}, Value2: #{value2}"}
end

end
def caller(some_closure)

some_closure.call
end
obj1 = ACoolClass.new(5)
p = obj1.display("some values")
caller(p)
p.call()
obj1.set(3)
p.call

ruby closure.rb
Value1: 5, Value2: some values
Value1: 5, Value2: some values
Value1: 3, Value2: some values

95-733 Internet Technologies 87

Pattern Matching

#Pattern matching using regular expressions

line = "http://www.andrew.cmu.edu"
loc = line =~ /www/
puts "www is at position #{loc}"

Output
======
www is at position 7

95-733 Internet Technologies 88

Regular Expressions
This split is based on a space, period or comma followed
by zero or more whitespace.

line2 = "www.cmu.edu is where it's at."
arr = line2.split(/[.,]\s*/)
puts arr

Output
======
www
cmu
edu
is
where
it's
at

Passing Hashes

95-733 Internet Technologies 89

def foo(a,hash)

hash.each_pair do |key, val|
puts "#{key} -> #{val}"

end
end

foo("Hello",{:cool => "Value", :tooCool => "anotherValue" })

Or, we may drop the parens…

foo "Hello" ,{:cool => "Value", :tooCool => "anotherValue" }

95-733 Internet Technologies 90

Ruby On Rails(1)

“A framework is a system in which much of the more or
less standard parts are furnished by the framework, so
that they do not need to be written by the application
developer.” Source: Sebesta

Like Tapestry and Struts, Rails is based on the Model View
Controller architecture for applications.

MVC developed at XeroxPARC by the Smalltalk group.

95-733 Internet Technologies 91

Ruby On Rails (2)

• Two fundamental principles:

-- DRY (Don’t Repeat Yourself)
-- Convention over configuration

• Rails is a product of a software development paradigm
called agile development.

• Part of being agile is quick development of working
software rather than the creation of elaborate
documentation and then software.

95-733 Internet Technologies 92

Model View Controller

• The Model is the data and any enforced constraints on
the data. Rails uses Object Relationship Mapping.
A class corresponds to a table. An object corresponds
to a row.

• The View prepares and presents results to the user.
• The Controller performs required computations and

controls the application.

Source: Sebesta

95-733 Internet Technologies 93

Model View Controller
§ Rails is a web-application and persistence framework.
§ MVC splits the view into "dumb" templates that are

primarily responsible for inserting pre-built data in
between HTML tags.

§ The model contains the "smart" domain objects (such
as Account, Product, Person.

§ The model holds all the business logic and knows how to
persist itself to a database.

§ The controller handles the incoming requests (such as
Save New Account, Update Product, Show Person)
by manipulating the model and directing data to the view.

From the Rails README

95-733 Internet Technologies 94

Model View Controller
§
browser controller

model RDBMSview

95-733 Internet Technologies 95

§
browser controller

model RDBMSview

Router
Recognizes URL’s and
chooses the controller and
method to execute.

Object/Relational
Mapping

Dynamic content
approaches:
-ERB
-XML Builder
-RJS for Javascript

Action
Pack

ActiveRecord

95-733 Internet Technologies 96

Rails Tools
§ Rails provides command line tools.
The following command creates many directories
and subdirectories including models, views, and
controllers:

$rails new greet
$cd greet
$rails generate controller say
Add get ‘/say/hello’, to: ‘say#hello’ to the end
of greet/config/routes.rb
Or, add get '/say/hello', :to => 'say#hello'
Add an HTML file named hello.html.erb to
greet/app/views/say
$rails server

95-733 Internet Technologies 97

Rails Directories
greet

app

controllers views models helpers

say_controller.rb
class SayController < ApplicationController
def hello

end
end

say

hello.html.erb

http://localhost:3000/say/hello
say => controller
hello => method in controller

95-733 Internet Technologies 98

hello.html.erb

say

hello.html.erb

<html>
<!– all instance variables of the

controller are visible here. - - >
<body>

Ruby says "Yo Mike".
<%a = 32%>Ruby is <%=a%> degrees cool.

</body>
</html>

views

95-733 Internet Technologies 99

Two Examples From Sebesta

• Hello world application
• Processing a Popcorn Form

95-733 Internet Technologies 100

Using Netbeans

See Tom Enebo’s NetBeans Ruby Project

95-733 Internet Technologies 101

Create an RoR Project

95-733 Internet Technologies 102

Select MySQL

95-733 Internet Technologies 103

Models Views and Controllers

95-733 Internet Technologies 104

Run And Visit Rails

95-733 Internet Technologies 105

Generate A Controller

95-733 Internet Technologies 106

Modify The Default Controller

The program say_controller.rb is the specific controller
for the SebestaProject1 project.
Add the definition of the hello method.

class SayController < ApplicationController
def hello
end

end

“hello” becomes part of the URL and
tells the controller about the view.

95-733 Internet Technologies 107

Enter The View

1. Select SebestaProject1/Views/Say
2. Right Click
3. New HTML file
4. File name hello.html.erb

<html>
<!– all instance variables of the controller are visible here. - - >
<body>

Ruby says "Yo Mike".
<%a = 32%>Ruby is <%=a%> degrees cool.

</body>
</html>

95-733 Internet Technologies 108

Run And Visit The Application

So far, no model.As an exercise, include the helper call
<%= link_to "Cool", :action => "hello" %>
in the html.

95-733 Internet Technologies 109

Processing Forms

95-733 Internet Technologies 110

Result

95-733 Internet Technologies 111

routes.rb

get '/home/the_form', to: 'home#the_form'
post '/home/result', to: 'home#result'

Quiz: How could these routes be written with :to rather
than to: ?

95-733 Internet Technologies 112

The Home controller(1)
class HomeController < ApplicationController

def the_form
end

95-733 Internet Technologies 113

The Home controller(2)
def result

@name = params[:name]
@street = params[:street]
@city = params[:city]
@unpop = params[:unpop].to_i
@unpop_cost = 3.0 * @unpop
@caramel = params[:caramel].to_i
@caramel_cost = @caramel * 3.5
@unpop_cost = sprintf("%5.2f",@unpop_cost)
@caramel_cost = sprintf("%5.2f",@caramel_cost)

end
end

95-733 Internet Technologies 114

The Form View(1)
<%= form_tag("/home/result", method: "post") do %>
<table>

<tr>
<td><%= label_tag(:name, "Buyer's Name:") %></td>
<td><%= text_field_tag(:name) %></td>

</tr>
<tr>

<td><%= label_tag(:street, "Street Address:") %></td>
<td><%= text_field_tag(:street) %></td>

</tr>

95-733 Internet Technologies 115

The Form View(2)
<tr>

<td><%= label_tag(:city, "City, State, Zip:") %></td>
<td><%= text_field_tag(:city) %></td>

</tr>
</table>
<table border="border">
<tr>

<th>Product Name</th>
<th>Price</th>
<th>Quantity</th>

</tr>

95-733 Internet Technologies 116

The Form View the_form.html.erb(3)
<tr>

<td>$3.00</td>
<td><%= label_tag(:unpop, "Unpopped Corn 1 LB") %></td>
<td><%= text_field_tag(:unpop) %></td>

</tr>
<tr>

<td>$3.50</td>
<td><%= label_tag(:caramel, "Caramel Corn 2 LB") %></td>
<td><%= text_field_tag(:caramel) %></td>

</tr>
</table>
<%= submit_tag("Submit Data") %>

<% end %>

95-733 Internet Technologies 117

Results View (result.html.erb) (1)

<h4>Customer:</h4>
<%= @name %>

<%= @street %>

<%= @city %>
<p/><p/>

95-733 Internet Technologies 118

Results View (result.html.erb) (2)

<table border="border">
<caption>Order Information</caption>
<tr>

<th>Product</th>
<th>Unit Price</th>
<th>Quantity</th>
<th>Item Cost</th>

</tr>
<tr align ="center">

<td>Unpopped Corn</td>
<td>$3.00</td>
<td><%= @unpop %> </td>
<td><%= @unpop_cost %> </td>

</tr>

95-733 Internet Technologies 119

Results View (result.html.erb) (3)

<tr align ="center">
<td>Caramel Corn</td>
<td>$3.50</td>
<td><%= @caramel %> </td>
<td><%= @caramel_cost %> </td>

</tr>
</table>

Routing Using routes.rb (1)

95-733 Internet Technologies 120

URL’s must be mapped to actions in the controller.

Suppose, in routes.rb, we have

get ‘/jobs/:id’, to: ‘jobs#show’

Then, an HTTP

GET /jobs/3

results in execution of the jobs controller’s show action with
{ :id => 3 } in params. Thus params[:id] is 3.

Routing Using routes.rb (2)

95-733 Internet Technologies 121

Suppose we have a line in routes.rb that reads:

resources :jobs

Then, we have created seven different routes to
various actions in the jobs controller.

GET /jobs maps to the index action
GET /jobs/:id maps to the show action
GET /jobs/new maps to the new action
GET /jobs/:id/edit maps to the edit action
POST /jobs maps to the create action
PUT and DELETE are mapped as well…

95-733 Internet Technologies 122

The Model (1)

• Rails uses Active Record for object-relational mapping.
• Database rows are mapped to objects with methods.
• In Java’s Hibernate, you work from Java’s object model.
• In Active Record, you work from an SQL schema.
• Active Record exploits metaprogramming and convention
over configuration.

95-733 Internet Technologies 123

The Model (2)

• This example is from Bruce Tate at IBM.
• See http://www.ibm.com/developerworks/

java/library/j-cb03076/index.html.

95-733 Internet Technologies 124

The Model (3)
Beginning from a database schema:

CREATE TABLE people (id int(11) NOT NULL auto_increment,
first_name varchar(255),
last_name varchar(255),
email varchar(255),
PRIMARY KEY (id));

Create a Ruby class:

class Person < ActiveRecord::Base

end

95-733 Internet Technologies 125

The Model (4)
This type of programming is now possible:

person = Person.new ;
person.first_name = "Bruce" ;
person.last_name = "Tate”;
person.email = bruce.tate@nospam.j2life.com;
person.save ;
person = Person.new;
person.first_name = "Tom”;
person.save

The Base class adds attributes to your person class
for every column in the database. This is adding code
to your code – metaprogramming.

Convention Over Configuration

95-733 Internet Technologies 126

Model class names such as Person are in
CamelCase and are English singulars.

Database table names such as people use
underscores between words and are English plurals.

Primary keys uniquely identify rows in relational databases.
Active Record uses id for primary keys.

Foreign keys join database tables. Active Record uses foreign
keys such as person_id with an English singular and an _id suffix.

Model Based Validation

95-733 Internet Technologies 127

class Person < ActiveRecord::Base
validates_presence_of :email

end

Relationships(1)

95-733 Internet Technologies 128

CREATE TABLE addresses (id int(11) NOT NULL auto_increment,
person_id int(11),
address varchar(255),
city varchar(255),
state varchar(255),
zip int(9),
PRIMARY KEY (id));

We are following the conventions, so we write…

Relationships(2)

95-733 Internet Technologies 129

class Person < ActiveRecord::Base
has_one :address # add an instance variable

of type address
validates_presence_of :email

end

class Address < ActiveRecord::Base
belongs_to :person

end

Note that “belongs_to:person” is a metaprogramming
method with a symbol parameter.

Relationships(3)

95-733 Internet Technologies 130

person = Person.new;
person.email = bruce@tate.com;
address = Address.new ;
address.city = "Austin”;
person.address = address;
person.save;
person2 = Person.find_by_email “bruce@tate.com”;
puts person2.address.city;

Output "Austin" ;

Relationships(4)

95-733 Internet Technologies 131

Other relationships are possible:

class Person < ActiveRecord::Base
has_many :addresses # must be plural
validates_presence_of :email

End

has_many adds an array of addresses to Person.

Relationships(5)

95-733 Internet Technologies 132

load 'app/models/person.rb’ ;
person = Person.find_by_email bruce@tate.com;
address = Address.new;
address.city = "New Braunfels”;
person.addresses << address;
person.save;
puts Address.find_all.size

Output => 2

