
95-733 Internet of Things
1

Carnegie Mellon University

95-733 Internet of Things
Flow Based Programming and Edge

Analytics

95-733 Internet of Things 2

Node-Red is a browser
based flow language

Carnegie Mellon University

95-733 Internet of Things

Node-Red

Carnegie Mellon University

3

95-733 Internet of Things

Node Red

• Flow Based Programming created by J. Paul Morrison (1970’s).
• Node-Red is a visual flow based tool based on Node.js.
• Each black box does one thing well. >750 boxes available.
• Built for programmers and non-programmers.
• No or little programming. Hmmm.
• Two short videos:

Node Red Introduction:
https://developer.ibm.com/components/node-red/videos/node-red-essentials

Node Red Fundamentals
https://www.youtube.com/watch?v=3AR432bguOY

Carnegie Mellon University
4

95-733 Internet of Things

Definitions
• Edge analytics is an approach to data collection and

analysis in which an automated analytical computation is
performed on data at a sensor, network switch or other
device instead of waiting for the data to be sent back to a
centralized data store. – WhatIs.com.

• The edge itself is a constrained area:
Constraints include weight, space, cost, battery
life, disconnected operation, intermittent
networks, limited connectivity, cost of network usage, etc.

• An edge environment may contain a half dozen sensors or
thousands of sensors.

• We might need a global view of what is going on on the
edge.

Carnegie Mellon University
5

95-733 Internet of Things
Carnegie Mellon University

6

From http://edgent.incubator.apache.org

Centralized and Edge Analytics

95-733 Internet of Things

Apache Edgent
• IBM Quarks launched in February 2016.
• Became Edgent and open sourced to Apache.
• Designed for edge analytics on a constrained

device.
• IBM’s Node Red, Apache Spark Streaming and

Apache Flink are typically found on the back end.
• Front end analytics important but may not be as

rich as data stores on the backend.
• Edgent is an SDK for the edge (you pick and

choose what to deploy).
• You may run on the edge with no communications

or only intermittent connectivity.

Carnegie Mellon University
7

95-733 Internet of Things

Edgent
• May run on Rasberry Pi or Android devices
• Currently Java based and does not run on Swift or

iPhone
• A simple linux box on the edge can run Java and

Edgent
• Edgent is a programming model (functional flow

API) and a lightweight embeddable runtime for
edge analytics

Carnegie Mellon University
8

95-733 Internet of Things

Edge and Centralized
Analytics

• Less and more selective communication to backend.
• Make local decisions (valuable especially when

disconnected).
• Central analytics system is not constrained like the

edge. Multiple devices may be reporting to the central
analytics system.

• The edge may receive commands from the central
analytics system, for example, central may ask the
edge to report more often if conditions require.

• Central analytics is not required but is a likely pattern.
Perhaps you only require local decision making.

• The Central analytics system may have access to
systems of record as well as a much wider variety of
data over many devices and types of data.

Carnegie Mellon University
9

95-733 Internet of Things

Cool Edgent Use Case

Carnegie Mellon University 10

Sensor reading water level

Sprinkler controllerRasberry Pi
Running Edgent

IBM Watson-IoT (MQTT)
Streaming analytics

Weather API

Govt. regulations

https://youtu.be/Rvc1CqNJkOA?list=PLhZR82i0P9NqrksME13f2t8tDMIhxUtCH

95-733 Internet of Things

Edgent
• Functional flow API for streaming analytics (Map,

Flatmap, Filter, Aggregate, Split, Union, Join,
Deadband filter)

• Connectors (MQTT, HTTP, Websockets, JDBC, File,
Kafka, IBM IoT Watson)

• For example, the Java API allows you to send
JSON to an MQTT device

• Bi-directional communications with the backend
• Edgent uses Java Lambda expressions.
• Let’s pause and look at Lambda expressions…

Carnegie Mellon University

11

95-733 Internet of Things

Java Lambda Expressions (1)
// ListenerTest, an example not from Edgent
package java.awt.event;
import java.util.EventListener;
public interface ActionListener extends EventListener {

public void actionPerformed(ActionEvent e);
}
// An interface with only one method is called a functional
interface.
// These interfaces are common in Java. See Runnable and
Comparator.
// What is required to implement this interface?
// Use lambda expressions for functional interfaces.

Carnegie Mellon University
12

95-733 Internet of Things

Java Lambda Expressions (2)

// Suppose we do not use lambdas and create an anonymous
// inner class to listen on a button

JButton testButton = new JButton("Test Button");
testButton.addActionListener(new ActionListener(){
@Override public void actionPerformed(ActionEvent ae){

System.out.println("Click Detected by Anon Class");
}
}
);

Carnegie Mellon University
13

95-733 Internet of Things

Java Lambda Expressions (3)

// add a second action listener using lambdas
testButton.addActionListener(

j -> System.out.println("This click Detected by Lambda Listner"));

JFrame frame = new JFrame("Listener Test");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.add(testButton, BorderLayout.CENTER);
frame.pack();
frame.setVisible(true);

}
}

Carnegie Mellon University
14

The single method takes a single
argument. We are implementing
the method with the lambda
expression. In this case, we are
not using j in the method.

95-733 Internet of Things

Java Lambda Expressions (4)

A lambda expression is composed of three parts:

Argument List Arrow Token Body

(int x, int y) -> x + y;
(String x) -> Sytem.out.println(x);

j -> System.out.println("Hi"));

The body can be either a single expression or a statement block.
It completes the single abstract method in a functional interface.
The class of j may be figured out by the compiler.

Carnegie Mellon University

15

95-733 Internet of Things

Java Lambda Expressions (5)

// This interface is functional - only one method
interface TestInterface {

public void sayHelloToWhoever();
}

// This interface is functional - only one method
interface TestInterface2 {
public void sayHelloToWhoever(String x);
}

Carnegie Mellon University

16

95-733 Internet of Things

Java Lambda Expressions (6)

// Make a call on an implementation of
// TestInterface2
public static void foo(TestInterface2 y) {

y.sayHelloToWhoever("Amy");
}

Carnegie Mellon University

17

95-733 Internet of Things

Java Lambda Expressions (7)
public class TestLambda {

public static void main(String...args) {
// We need an implemenation of the TestInterface interface.
// The lambda expression provides that.
// The method takes no parameters.
TestInterface i = () -> System.out.println("Mike");
i.sayHelloToWhoever();

// In TestInterface2, we need to handle x in the method.
// The compiler can figure that x is a String. We can drop “String”.
TestInterface2 j = (String x) -> System.out.println(x + " is cool.");
j.sayHelloToWhoever("Sam");

// pass around a code block
foo(j);
// again
foo(x -> System.out.println("Wow"));

}

Carnegie Mellon University

18

95-733 Internet of Things

Java Lambda Expressions (8)
package runabletest;
public class RunnnableTest {

public static void main(String[] args) {
System.out.println("=== RunnableTest ===");
// Anonymous classes - provide the implementation
// of run
Runnable r1 = new Runnable(){

@Override public void run(){
System.out.println("Hello world one!");

}
};

Carnegie Mellon University

19

95-733 Internet of Things

Java Lambda Expressions (9)

// Lambda Runnable
Runnable r2 = () -> System.out.println("Hello world two!");

r1.run();
r2.run();

}
}
=== RunnableTest ===
Hello world one!
Hello world two!

Carnegie Mellon University

20

95-733 Internet of Things

Edgent Flow Programming
http://edgent.incubator.apache.org/docs/streaming-
concepts

21Carnegie Mellon University

http://edgent.incubator.apache.org/docs/streaming-concepts

95-733 Internet of Things

Edgent Example(1)

import java.util.Random;
import quarks.function.Supplier;
// Every time get() is called, TempSensor
// generates a temperature reading.
public class TempSensor implements Supplier<Double> {

double currentTemp = 65.0;
Random rand;
TempSensor(){

rand = new Random();
}

Carnegie Mellon University
22

95-733 Internet of Things

Edgent Example(2)
@Override // the get() method defined in Supplier
public Double get() {
// Change the current temperature some random amount
double newTemp = rand.nextGaussian() + currentTemp;
currentTemp = newTemp;
return currentTemp;
}
}

Carnegie Mellon University

95-733 Internet of Things

Edgent Example(3)
// First download the appropriate jars

import java.util.concurrent.TimeUnit;
import org.apache.edgent.providers.direct.DirectProvider;
import org.apache.edgent.topology.TStream;
import org.apache.edgent.topology.Topology;

Carnegie Mellon University

95-733 Internet of Things

Edgent Example(4)
public class TempSensorApplication {

public static void main(String[] args) throws Exception {
// implements Supplier
TempSensor sensor = new TempSensor();

DirectProvider dp = new DirectProvider();
Topology topology = dp.newTopology();
TStream<Double> tempReadings = topology.poll(sensor, 1,

TimeUnit.MILLISECONDS);
TStream<Double> filteredReadings =

tempReadings.filter(reading -> reading < 50 || reading > 80);
filteredReadings.print();
dp.submit(topology);

}
}

Carnegie Mellon University

95-733 Internet of Things

Edgent Example(5)
42.21773497632803
43.778600196956134
43.50474973480867
43.825909511894686
45.161912344306764
46.12672565018012
47.566025733982215
47.660160245707836

Carnegie Mellon University

