
95-733 Internet of Things

95-733 Internet of Things
XMPP Overview

1Carnegie Mellon University

95-733 Internet of Things

22

Internet Protocol Suite

HTTP, Websockets, DNS, XMPP,
MQTT, CoAp

Application layer

TLS, SSL Application Layer (Encryption)
TCP, UDP Transport
IP(V4, V6), 6LowPAN Internet Layer
Ethernet, 802.11 WiFi,
802.15.4

Link Layer

Where are we?

We are here!

95-733 Internet of Things

Who Uses XMPP?
• Note: Short Message Service (SMS) is based on cellular

connections. Here we are talking about instant
messaging over the internet.

• Cisco Webex
• WhatsApp uses a trimmed down version.
• WhatsApp is one-to-one chat plus multi-user chat plus

presence plus contact list management
• Google’s Firebase use XMPP Json and Google’s Android
• Adopted by Sensor Andrew
• So, what does a messaging system have in common

with IoT?
• IoT is all about messaging

95-733 Internet of Things

XMPP was originally named
Jabber

• Jabber is best known as “the Linux of instant messaging”.
Implemented by ejabberd in Erlang.

• It is an open, secure, ad-free alternative to consumer
instant messaging services like AIM, ICQ, MSN, and Yahoo.

• Under the hood, Jabber is a set of streaming XML protocols
and technologies that enable any two entities on the
internet to exchange messages, presence, and other
structured information in close to real time. (Jabber.org)

95-733 Internet of Things

XMPP From IETF
• In IM, the central point of focus is a list of one's contacts or

"buddies" (in XMPP this list is called a "roster").
• Exchange relatively brief text messages with particular

contacts in close to real time The catalyst for exchanging
messages is "presence" -- i.e., information about the network
availability of particular contacts (thus knowing who is online
and available for a one-to-one chat session).

• Presence information is provided only to contacts that one has
authorized by means of an explicit agreement called a
"presence subscription".

• Thus at a high level XMPP needs to be able to complete the
following use cases:
– Manage items in one's contact list (list is maintained on

the server)
– Exchange messages with one's contacts
– Exchange presence information with one's contacts (send

communication status to the server)
– Manage presence subscriptions to and from one's contacts

95-733 Internet of Things

SMTP Architecture

95-733 Internet of Things

XMPP Architecture

95-733 Internet of Things

XMPP From IBM
• Many useful technologies are often applied in ways their

originators never considered.
• For example, HTTP is the de facto standard protocol for serving

web pages over the internet, but it is also used as an application-
layer transport for other protocols like SOAP and REST.

• XMPP is another useful technology that is finding many new
applications beyond simply instant messaging. XMPP has several
positive attributes.

• Quiz:
Is XMPP programming language dependent?
Is XMPP OS independent?
Are the messages defined by a standards body?
Are MQTT or websocket messages defined by a standards
body?
Can XMPP be used over websockets?

No
Yes
Yes

No
Yes

95-733 Internet of Things

XMPP Basic connection
1. Client initiates a TCP connection
2. Client sends presence information to the server
3. The client requests and receives its roster
4. The client interacts with roster members
5. The client disconnects

This is all done with standard XML messages using the XMPP
vocabulary and grammar.

95-733 Internet of Things

Naming Things (1)
• A lot like an email address, XMPP uses Jabber ID’s (JIDs)
• All of these JIDs could be logged on at the same time.

mm6@andrew.cmu.edu Called a “bare JID”
mm6@andrew.cmu.edu/mobile A full JID includes a

resource.
mm6@andrew.cmu.edu/tablet A resource is used for

message delivery
mm6@andrew.cmu.edu/auto Useful if logged in from

several devices
On Whatsapp: 412-776-1212@s.whatsapp.net

mailto:mm6@andrew.cmu.edu
mailto:mm6@andrew.cmu.edu/mobile
mailto:mm6@andrew.cmu.edu/tablet
mailto:mm6@andrew.cmu.edu/auto

95-733 Internet of Things

Naming Things (3)

From: https://www.blikoontech.com/xmpp/xmpp-a-soft-friendly-introduction

95-733 Internet of Things

An Example (from IBM)

The XML is being
Transferred in pieces.
The TCP connection
only closes at the end.

There are two
XML documents
involved.

Would this work
over websockets?

Sure. It involves a
bidirectional
conversation.

95-733 Internet of Things

XMPP From the perspective
of the application developer

• We do not want to work at the level of XML or JSON.
• We want middleware to provide support.
• Middleware separates concerns. It hides the details associated

with messaging.
• Details include marshalling and un-marshaling of parameters

and addressing.
• Details include generating the correct XMPP message to send.
• Details include reading and writing messages to the TCP layer.
• At the application programmer level, WE WANT NONE OF

THAT!
• Use middleware to hide all of that!

95-733 Internet of Things

XMPP Client in Ruby
Listing 1. Simple XMPP agent for word definitions (IBM)
require 'xmpp4r/client'
Create a *very* simple dictionary using a hash
hash = {}
hash['ruby'] = 'Great object oriented scripting language'
hash['xmpp4r'] = 'Simple XMPP library for ruby'
hash['xmpp'] = 'Extensible Messaging and Presence Protocol'
Connect to the server and authenticate
jid = Jabber::JID::new('bot@default.rs/Home')
cl = Jabber::Client::new(jid)
cl.connect
cl.auth('password')

95-733 Internet of Things

XMPP Client in Ruby
Indicate our presence to the server
cl.send Jabber::Presence::new

Send a salutation to a given user that we're ready
salutation = Jabber::Message::new('hal@default.rs', 'DictBot
ready')
salutation.set_type(:chat).set_id('1')
cl.send salutation

95-733 Internet of Things

XMPP Client in Ruby
Add a message callback to respond to peer requests
cl.add_message_callback do |inmsg|

Lookup the word in the dictionary
resp = hash[inmsg.body]
if resp == nil

resp = "don't know about " + inmsg.body
end
Send the response
outmsg = Jabber::Message::new(inmsg.from, resp)
outmsg.set_type(:chat).set_id('1')
cl.send outmsg

end

95-733 Internet of Things

Java uses the Smack API
In order to test the client, we'll need an XMPP server. To do so,
create an account on jabber.hot-chilli.net – a free Jabber/XMPP
service.
import org.jivesoftware.smack.Chat;
import org.jivesoftware.smack.ConnectionConfiguration;
import org.jivesoftware.smack.MessageListener;
import org.jivesoftware.smack.Roster;
import org.jivesoftware.smack.RosterEntry;
import org.jivesoftware.smack.XMPPConnection;
import org.jivesoftware.smack.XMPPException;
import org.jivesoftware.smack.packet.Message;
// Works with Android

95-733 Internet of Things

Java uses the Smack API

private XMPPConnection connection;
public void login(String userName, String password) throws

XMPPException {
// Use a local XMPP server
ConnectionConfiguration config = new

ConnectionConfiguration("localhost", 5222);
connection = new XMPPConnection(config);
connection.connect();
connection.login(userName, password);

}

95-733 Internet of Things

95-733 Internet of Things

Java uses the Smack API
public void displayBuddyList() {

Roster roster = connection.getRoster();
Collection<RosterEntry> entries = roster.getEntries();
System.out.println("\n\n" + entries.size() + " buddy(ies):");
for(RosterEntry r:entries) {

System.out.println(r.getUser());
}

}

Many XMPP Javascript libraries exist for real time chat within a
browser over websockets.

95-733 Internet of Things

XMPP and Thing Registration
<iq type='set'

from='thing@example.org/imc'
to='discovery.example.org'
id='1'>

<register xmlns='urn:xmpp:iot:discovery'>
<str name='SN' value='394872348732948723'/>
<str name='MAN' value='www.ktc.se'/>
<str name='MODEL' value='IMC'/>
<num name='V' value='1.2'/>
<str name='KEY' value='4857402340298342'/>

</register>
</iq>

95-733 Internet of Things

Suppose a sensor is
registered. How do we read

from it?

95-733 Internet of Things

Reading sensor data
• Request to a Thing for an Automatic Meter Reading
<iq type='get' from='client@clayster.com/amr'

to='device@clayster.com' id='S0001'>
<req xmlns='urn:xmpp:iot:sensordata' seqnr='1’

momentary='true'/>
</iq>
• Response from the Thing – I got your request
<iq type='result' from='device@clayster.com'

to='client@clayster.com/amr' id='S0001'>
<accepted xmlns='urn:xmpp:iot:sensordata' seqnr='1'/>

</iq>

95-733 Internet of Things

Data arrives from a sensor
<message from='device@clayster.com'

to='client@clayster.com/amr'>
<fields xmlns='urn:xmpp:iot:sensordata' seqnr='1' done='true'>

<node nodeId='Device01'>
<timestamp value='2013-03-07T16:24:30'>

<numeric name='Temperature' momentary='true'
automaticReadout='true' value='23.4' unit='°C'/>

<numeric name='load level' momentary='true'
automaticReadout='true'
value='75' unit='%'/>

</timestamp>
</node>

</fields>
</message>

<!– Note how the units are stated and the lack of ambiguity -->

95-733 Internet of Things

Sensor Andrew Based on
XMPP (2007)

95-733 Internet of Things

Non-functional characteristics:
Open (XMPP)

Standards based
Standard message formats

Heterogeneous sensors
Security, Privacy Challenges
Reliable (ejabberd – Erlang open

source)
Fault tolerant (ejabberd, Erlang)

In ejabberd all information can be
stored on more than one node,
nodes can be added or replaced
“on the fly”. Erlang is big on
handling failures

Performance (speed) XML is
typically far slower than
compact binary messages

Extensible
Manageable
Cost

95-733 Internet of Things

Sensor Andrew
A good architecture survives
change. What could change?

Price of things
Variety of things (sensors)
Applications
Ubiquity of networks
Speed of networks
Battery life
Speed of processors
Effects of failure
Government regulations?

We do not allow cars on
the road without seatbelts.
We may need governments
to regulate IOT devices
for security. New California
IoT law goes into effect
January 1, 2020

