
95-733 Internet of Things
1

Carnegie Mellon Heinz College

95-733 Internet of Things
REST, Integration Patterns, and CoAP

95-733 Internet of Things

22

Internet Protocol Suite
HTTP, Websockets, DNS, XMPP,
MQTT, CoAp

Application layer

TLS, SSL Application Layer (Encryption)
TCP, UDP Transport
IP(V4, V6), 6LowPAN Internet Layer
Ethernet, 802.11 WiFi,
802.15.4

Link Layer

Where are we?

We are here!

95-733 Internet of Things

REST
• The term representational state transfer (REST) was introduced and

defined in 2000 by Roy Fielding in his doctoral dissertation.

• The term is intended to evoke an image of how a well-designed Web
application behaves. Many web applications are not “RESTful”.

• It is a network of Web resources where the user progresses through
the application by selecting links, such as /user/tom, and operations
such as GET or DELETE, resulting in the next resource (representing
the next state of the application) being transferred to the user for their
use. (Wikipedia)

https://en.wikipedia.org/wiki/Roy_Fielding

95-733 Internet of Things

REST API Design Principles
Principle Implementation
Use a constrained user
interface. The verbs are
polymorphic.

HTTP GET, POST, DELETE, PUT

Use standard status codes.
Don’t make things up.

HTTP codes

Use URI’s for nouns. Naming. Identification of resources.
Well designed URI’s pointing to a
resource - protocol and location.

Negotiate representations. JSON or XML messages or Image or …

HATEOAS (Hypertext as the
Engine of application state)

Messages returning pointers or links for
further discovery.

Statelessness Simple request/response required. No
conversational state. Easy to scale. The
request must contain all that is required
for the reply to be computed.

95-733 Internet of Things

A RESTful Request/Response
• GET /basement/water/temperature

200 OK
application/text
40.5 F

• GET /basement/water/volume
200 OK
application/text
200 G

• Still better to use a standard message format (representations)
for return values.

• Spend more time designing return value format!
• Use JSON-LD - Javascript Object Notation for Linked Data

95-733 Internet of Things

IoT Metadata
• Interoperability – How can I interact with this device?
• Make this data available to device users – on the device, on a

gateway, or from a digital twin.
• Include metadata in messages to provide meaning – is this

temperature in Celsius or Fahrenheit? Is this weight in ounces
or grams.

• Include a Thing Description for every Thing. Place it on the
device, on a gateway, or in the cloud.

• Follow guidelines from W3C Thing Description standard.

6Carnegie Mellon Heinz College

95-733 Internet of Things

JSON-LD Thing Description
GET http://mythingserver.com/things/pi
Accept: application/json

200 OK
{

"id": "https://mywebthingserver.com/things/pi",
"title": "WoT Pi",
"description": "A WoT-connected Raspberry Pi",
"properties": {

"temperature": {
"title": "Temperature",
"type": "number",
"unit": "degree celsius",
"readOnly": true,
"description": "An ambient temperature sensor",
"links": [{"href": "/things/pi/properties/temperature"}]

},

95-733 Internet of Things

JSON-LD Thing Description
"humidity": {

"title": "Humidity",
"type": "number",
"unit": "percent",
"readOnly": true,
"links": [{"href": "/things/pi/properties/humidity"}]

},
"led": {

"title": "LED",
"type": "boolean",
"description": "A red LED",
"links": [{"href": "/things/pi/properties/led"}]

}
},

95-733 Internet of Things

JSON-LD Thing Description
"actions": {

"reboot": {
"title": "Reboot",
"description": "Reboot the device"

}
},
"events": {

"reboot": {
"description": "Going down for reboot"

}
},

95-733 Internet of Things

JSON-LD Thing Description
"links": [

{
"rel": "properties",
"href": "/things/pi/properties"

},
{

"rel": "actions",
"href": "/things/pi/actions"

},
{

"rel": "events",
"href": "/things/pi/events"

},
{

"rel": "alternate",
"href": "wss://mywebthingserver.com/things/pi"

},

{
"rel": "alternate",
"mediaType": "text/html",
"href": "/things/pi"

}
]
}

95-733 Internet of Things

WoT Integration Patterns
• Direct integration Pattern
• Gateway Integration Pattern
• Cloud Integration Pattern

Notes on Integration Patterns from “Building the Web of Things” by Guinard and Trifa

95-733 Internet of Things

Direct Integration Pattern
• Some Things have full internet access. These Things may

provide an HTTP server running over TCP/IP and can directly
connect to the internet – using, say, WiFi or Ethernet or
cellular. Rasberry-Pi’s and Argon’s are examples. These may
be used to implement a Direct Integration Pattern – REST on
devices.

Thing running an HTPP REST
server

Client

• Typical use case: The Thing is not battery powered and communicates
with low latency to a local device like a phone.

• Example: Use a phone to communicate via WiFi (with WiFi router) to
an HTTP server on a device. Use web sockets for publish/subscribe,
e.g., phone listens for doorbell events.

95-733 Internet of Things

Gateway Integration Pattern
• Some Things may not have full internet access. These Things

may support only Zigbee or Bluetooth or 802.15.4. Suppose
we cannot send IP packets to the device – it is constrained.
This is the Gateway Integration Pattern.

Thing providing access via
non-web protocols.

Gateway providing
full REST API

Client

The interaction between the gateway
and the device is hidden from the
client. Legacy devices may be
integrated onto the web with this
approach.

95-733 Internet of Things

Cloud Integration Pattern
• Some Things have access to the cloud and need powerful and

scalable cloud support. This is the Cloud Integration Pattern.
The Particle Argon, for example, can send event notifications
to the Particle cloud. The particle cloud provides
publish/subscribe using web hooks.

May or may not use web protocols
but is able to communicate with
a gateway in the cloud.

Gateway providing
full REST API or
pubsub using web hooks

Client

Cloud resource Device

95-733 Internet of Things
95-733 Internet of Things

Patterns from “Building the Web of Things” by Guinard and Trifa

Web of Things Integration Patterns

95-733 Internet of Things
95-733 Internet of Things

Use if Thing has enough power to support an HTTP server, e.g., a WiFi
camera. Security is of high concern. From Mozilla

Web of Things Integration Patterns

95-733 Internet of Things

This pattern is particularly useful for devices which have limited power or
which use PAN network technologies like Bluetooth or ZigBee that don’t
directly connect to the Internet (e.g. a battery powered door sensor). From Mozilla

Web of Things Integration Patterns

95-733 Internet of Things

Suppose the device uses some other protocol to communicate with the
server on the back end. This pattern is particularly useful for a large number
of devices over a wide geographic area which need to be centrally
co-ordinated (e.g. air pollution sensors). LoRaWAN is here. From Mozilla

Web of Things Integration Patterns

95-733 Internet of Things

Constrained Application
Protocol

95-733 Internet of Things
20

Internet Protocol Suite
HTTP, Websockets, DNS, XMPP,
MQTT, CoAp

Application layer

TLS, SSL Application Layer (Encryption)
TCP, UDP Transport
IP(V4, V6), 6LowPAN Internet Layer
Ethernet, 802.11 WiFi,
802.15.4

Link Layer

Where are we?

We are here!

95-733 Internet of Things

Constrained Application
Protocol (CoAp)

• A key IoT standard. Supported in Java, C, Python,
C#, Go, etc.

• Open IETF standard since June 2014.
• Based on web standards, easily integrates with

HTPP. Is not simply a compressed version of HTTP.
• Built for small, constrained, imbedded, occasionally

sleeping devices. Why sleep?
• Some built-in reliabilty over UDP/IP.
• May also run over UDP/6LoWPan.
• Use on low power, low bandwidth, lossy networks.
• Is not HTTP but is clearly based on REST.

95-733 Internet of Things

Constrained Application
Protocol (CoAp)

• Over UDP or SMS on cellular networks
• DTLS for security
• Asynchronous subscriptions and notifications over

UDP
• Built-in resource discovery
• Peer to peer or client server and multi-cast

requests

95-733 Internet of Things

Constrained Application
Protocol (CoAp)

• Who uses or supports CoAP?
- Open Mobile Alliance M2M
- IPSO Alliance (IP for Smart Objects)
- M2M / OneM2M
- European Telecom Standards

Institute
- Lighting systems for smart cities
- Device management for network operators.
- Copper is a Firefox plugin – treats

devices as REST services
- Main Java project on github : Californium

95-733 Internet of Things

Recall the typical HTTP
Interaction

• Connection oriented and synchronous (blocking)
• TCP 3 way handshake with server
• HTTP GET /kitchen/light
• HTTP response with headers and {“setting” : “dim” }
• TCP 2 way termination
• Too much work for simple IoT applications
• CoAP is not a general replacement for HTTP
• CoAP does not support all features of HTTP

95-733 Internet of Things

CoAp is based on REST

Battery powered device
providing CoAp.
Communication uses UDP over a
PAN protocol, e.g., 6LoWPAN over
IEEE 802.15.4 or Bluetooth Low Energy

Gateway providing
full REST API

Client

CoAP provides a request/response RESTful interaction like HTTP.
Smaller messages than HTTP and with very low overhead.
BLE nodes, for example, have limited memory and storage.
Sensors and actuators on BLE nodes are simply CoAP REST resources.
For example, to obtain a current temperature, send a GET request.
To turn on/off or toggle LEDs we use PUT requests.

HTTP

CoAP

95-733 Internet of Things

CoAp
• Has a scheme coap://
• Has a well known port.
• GET, POST, PUT, DELETE encoded in binary (1 == GET)
• Block transfer support.
• Confirmable messages requires an ACK with message ID. The

message ID of the ACK matches the message ID of the confirmable
message.

• Non-confirmable messages do not require an ACK. Less reliable.
• Responses are matched with requests via the client generated

Token.
• Example:

CoAP Client CoAP Server
----> CON {id} GET /basement/light
Confirmable request has an ID

<---- ACK {id} 200 Content {“status” : “on”}
Piggy back response and same ID

95-733 Internet of Things

CoAP Uses Timeouts over
UDP

CoAP Client CoAP Server

---> CON {id} GET /basement/light lost request
timeout
---> CON {id} GET /basement/light finally arrives

<--- ACK {id} 200 Content {“status” : “on”}

The {id} allows us to detect duplicates.
What happens if the ACK is also lost?

95-733 Internet of Things

CoAP
Request/Acknowledge/Callback

CoAP Client CoAP Server
----> CON {id} PUT /basement/cleanFloor Token: 0x22

Needs time
<---- ACK {id} I am on it!
<----- CON {newID} 200 Content /basement/cleanFloor Token:

0x22 Done
----> ACK {newID}

In this example, the same token is used to identify this request and the service response.
The id’s are used at the message level.

95-733 Internet of Things

CoAP Publish/Subscribe

CoAP Client CoAP Server
----> CON {id} GET /basement/light Observe: 0 Token: 0x22
<---- ACK 200 {id} Observe: 27 Token 0x22
<---- CON 200 Observe: 28 Token: 0x22 {“light” : ”off”}
-----> ACK Token: 0x22
<---- CON 200 Observe: 30 Token: 0x22 {“light” : ”on”}

:
:
etc.

Block transfer is similar. We may request a transfer (one block at a time).

The GET includes an “Observe” message to establish a subscription request.
The response includes an “Observe” to say this is a publication.
The value included with Observe response is there for possible re-orderings.
The client should take the most recent sent and not the most recent to arrive.

95-733 Internet of Things

CoAP Resource Discovery
• Not the same as service discovery. Service discovery is at a

lower level. At low levels, we don’t even know if services are
available or how they communicate.

• We might register a printer, for example, with a discovery
service and find it later on the fly.

• With resource discovery, we know we are looking for web
resources.

• Links are returned. HATEOAS.
• Links may include a rel attribute – providing semantics.
• A well known resource is used to discover other resources.
• Perform a GET on the well known resource. Returned content

is a list
of links with REL attributes.

• Resource directories may be used to register resources.
Registrations are simply POSTs with links. PUTs are used for
updates. GETs for discovery.

95-733 Internet of Things

CoAP Resource Discovery

CoAp Client CoAp Server

----> CON {id} GET /.well-known/core Token: 0x22
<---- ACK 200 {id} Content “/sensor/temp /sensor/light”
----> CON {id} GET /sensor/light
<---- ACK 205 {id} Content “dim”
----> CON {id} GET /sensor/temp

<---- ACK 205 {id} Content “72”

Notes on CoAP from the CoAp tutorial at
https://www.youtube.com/watch?v=4bSr5x5gKvA

https://www.youtube.com/watch?v=4bSr5x5gKvA

95-733 Internet of Things

Building the WoT- How to
guide

0) A Smart Thing is a digitally enhanced object. A Connected Thing
includes a network.
1) Identify resources with Uniform Resource Identifiers. Actuators,
sensors, tabletops, rooms, Smart Things, etc. – all get a URI. These
are the nouns.
2) Use a constrained interface and exploit polymorphism. Use HTTP
or CoAP. PUT, GET, etc. are the verbs.
3) Agree upon resource representation formats. Use JSON or JSON-
LD (JSON with semantics). On the web, the wide adoption of HTML
allows clients and servers to cooperate without individual
agreements.
4) Use well known addresses and links for discovery – perhaps
exploiting JSON-LD.
5) Provide stateless interactions. Each request should contain all that
the server needs to satisfy the request.
From “A Resource Oriented Architecture for the Web of Things”, Guinard, Trifa, and Wilde

