95-712 OOP/Java Due: Tuesday, June 17, 2008

Homework 2

 Introductory Java Cryptography

 Part A. An RSA Toy Example (8 questions 40 Points)

 RSA Public Key Cryptography

(1) Break up the example program (SimpleCrypto.java on the course slides and included below) into three smaller programs (KeyGen.java, Encode.java, and Decode.java). Each of these programs should provide directions to the user and each should display their results so they are easy to interpret.

(a) The program KeyGen.java will ask the user for two primes (p and q) with p < q. It will compute n, phi, e, and d and will display these values to the user in a nicely formatted way.

(b) The program Encode.java will ask the user for a public key pair (e,n) and a single character to be encoded. The character (m) will be entered from the keyboard and it will be used to compute c = me mod n. This encoded value (c) will then be displayed to the user as an integer.

(c) The program Decode.java will ask the user for a private key pair (d,n) and a single integer (c) to be decoded. The program will then compute m = cd mod n and display the result as a character.

 Use your programs from part (1) to help answer the following questions.

(2) (a) Send a message to Bob. The message that you want to send is the left brace character ‘{‘. You know that Bob’s (e,n) pair is (5,437). What integer will you send ? _______

 (b) Send another message to Bob. The message that you want to send is the lower case character j.

 You know that Bob’s (e,n) pair is (5,437). What integer will you send ? _______

(3) Bob receives a message. It is the integer 16. Bob’s (d,n) pair is (317,437). What message did Bob

 receive? ______

(4) An eavesdropper is watching all communications that are destined for Ken. The eavesdropper sees the pair (9,247). He knows that the first number is an encoded ASCII value and the second number is Ken’s value for n. He also knows the algorithm that Ken uses to determine n, phi, e and d from p and q. The eavesdropper sees that Ken has chosen a rather small value for n and so decides to break this code. What ASCII character is being sent to Ken? ______

(5) Consider an RSA key set with p = 11, q = 29, n = 319, and e = 3. What value of d should be used

 in the secret key? _______ What is the encryption of the single integer message m = 100 ? This

 is one integer not 3 characters.

(6) Bob receives several digitally signed messages from someone he thinks may be Alice. He knows that Alice’s public key is (e = 3, n = 391). The messages each arrive in two parts. The first part is “in the clear” and is not protected from disclosure. The second part is the first part encrypted using the signer’s secret key d. Here are the message pairs Bob receives. Which ones are actually from Alice and which one’s have been corrupted or are forged? (Hint: Alice uses her secret key to encrypt the signed part. Bob needs to use Alice’s public key to compare the clear text with the encoded text.)

<’A’, 112>

 <’L’, 359>

 <’X’, 296>

 <’B’, 113>

(7) Alice’s public key pair is (e = 3, n = 391). Write a Java program that behaves as follows (EncodeString.java):

 java EncodeString

 Enter the encoding exponent e : 3

 Enter the modulus n : 391

 Enter the string to encode : Hello Alice

234 16 301 301 304 315 143 301 265 228 16

(8) Alice’s private pair is (235,391). Write a Java program that behaves as follows:

 Java DecodeInts.java

 Enter the decoding exponent d : 235

 Enter the modulus n : 391

 Enter the number of integers to decode : 11

 234 16 301 301 304 315 143 301 265 228 16

 Hello Alice

Part B. Java Networking and Simple Decryption (20 Points)

 The program EncodeFile.java (see below) was used to encode a file called http://www.andrew.cmu.edu/~mm6/95-712/hidden.txt. The values used for encryption were n = 299 and e = 7. The values used for decryption are n = 299 and d = 151. The program below reads a byte and computes c = bytee mod n. Since n = 299 the result may be larger than the capacity of a single byte (0..255). So, two bytes are used to store the encrypted data. The program that decodes this file will need to read two bytes prior to raising them to the d’th power mod n.

(9) Write a program called DecodeFile.java that reads the file hidden.txt from the internet (use the URL class) and writes the decoded version to the local file system. The program must be executed as shown below and must be well documented.

C:\McCarthy\www\95-712\simplecrypto>java DecodeFile http://www.andrew.cmu.edu/~mm6/95-712/hidden.txt clear.txt

Enter values for private pair d and n

151 299

File clear.txt written

Part C. Monty Hall Simulation (40 points)

Write a documented and object oriented simulation program for the “Monte Hall paradox” that was discussed in class. Your program should ask the user if she wants to “always switch” or “never switch”, and then silently simulate the game 10,000 times given this decision. Don’t repeatedly ask the user for her decision on each trial! Don’t print out any debugging text! Print out only the overall fraction of times the player wins the grand prize.

To submit the assignment, please zip all your files into one single file and submit through the

digital dropbox on the blackboard.

// SimpleCrypto.java

// A minimum RSA public key cryptography example in Java.

// It only works for small p and q.

public class SimpleCrypto {

 public static void main(String args[]) {

// choose two distinct primes with p < q

long p = 13;

long q = 19;

 System.out.println("p = " + p + " q = " + q);

 // choose n as the product of p and q

// no known algorithm can recompute p and q from n within a reasonable period

// of time for large n.

long n = p * q;

 System.out.println("The value of n = " + n);

 // Compute phi = (p-1)*(q-1).

long phi = (p - 1) * (q - 1);

 System.out.println("The value of PHI = " + phi);

// choose a random prime e between 1 and phi, exclusive, so that e

// has no common factors with phi.

long e = findfirstnocommon(phi);

 System.out.println("The public exponent = " + e);

 // Compute d as the multiplicative inverse of e

 // modulo phi(n).

 long d = findinverse(e,phi);

 System.out.println("The private key is " + d);

 System.out.println(" (d) (e) mod phi = " + (d * e) % phi);

 // let m be the message that needs to be encoded

 char m = 'Q';

 // encode m as c = m^e mod n using expomod

 long c = expomod(m,e,n);

 // c is sent to the receiver over an open channel

 System.out.println("Transmitting encoded " + m + " as " + c);

 // decode c to m = c^d mod n

m = (char)expomod(c,d,n);

System.out.println("Decoding " + c + " to " + m);

 }

 // Let a and n be two longegers with n > 0. We wish to compute

 // x = a^n mod z.

 static long expomod(long a, long n, long z) {

 long r = a % z;

for(long i = 1; i < n; i++) {

r = (a * r) % z;

}

return r;

 }

 static long findfirstnocommon(long n) {

long j;

for(j = 2; j < n; j++)

if(euclid(n,j) == 1) return j;

return 0;

 }

 static long findinverse(long n, long phi) {

long i = 2;

while(((i * n) % phi) != 1) i++;

return i;

 }

 static long euclid(long m, long n) {

// pre: m and n are two positive integers (not both 0)

// post: returns the largest integer that divides both m and n exactly

 while(m > 0) {

long t = m;

m = n % m;

n = t;

}

return n;

 }

}

C:\McCarthy\www\95-712\simplecrypto>javac SimpleCrypto.java

C:\McCarthy\www\95-712\simplecrypto>java SimpleCrypto

p = 11 q = 37

The value of n = 407

The value of PHI = 360

The public exponent = 7

The private key is 103

 (d) (e) mod phi = 1

Transmitting encoded A as 21

Decoding 21 to A

// EncodeFile.java

// The user enters two file names on the command line. The

// first is the input file and the second gets the encrypted result.

// The encrypted file is twice the size as the original unencrypted

// file. The program uses RSA for encryption.

import java.io.*;

import java.util.*;

public class EncodeFile {

 public static void main(String args[]) throws IOException {

BufferedReader keyIn =

 new BufferedReader(

 new InputStreamReader(System.in));

 System.out.println("Enter values for public pair e and n");

 String input = keyIn.readLine();

 StringTokenizer st = new StringTokenizer(input);

 long e = new Integer(st.nextToken()).longValue();

 long n = new Integer(st.nextToken()).longValue();

 DataInputStream in =

 new DataInputStream(

 new BufferedInputStream(

 new FileInputStream(args[0])));

 DataOutputStream out =

 new DataOutputStream(

 new BufferedOutputStream(

 new FileOutputStream(args[1])));

 byte byteIn;

 long longIn;

 try {

 while(true) {

 byteIn = in.readByte();

 longIn = byteToLong(byteIn);

 long c = expomod(longIn,e,n);

 byte c0 = leastByte(c);

 byte c1 = mostByte(c);

 out.writeByte(c0);

 out.writeByte(c1);

 }

 }

 catch(EOFException ex) {

 in.close();

 out.close();

 }

 }

 static byte leastByte(long x) {

 byte b = (byte)(0x00000000000000FF & x);

 return b;

 }

 static byte mostByte(long x) {

 x = 0x000000000000FF00 & x;

 x = x >> 8;

 byte b = leastByte(x);

 return b;

 }

 static long byteToLong(byte b) {

 long x = b;

 x = x & 0x00000000000000FF;

 return x;

 }

 // Let a and n be two long integers with n > 0. We wish to compute

 // x = a^n mod z.

 static long expomod(long a, long n, long z) {

 long r = a % z;

for(long i = 1; i < n; i++) {

r = (a * r) % z;

}

return r;

 }

}

