95-712 Object Oriented Programming Java
 Carnegie Mellon

Master of Science in Information Technology

Homework 2

DUE: Tuesday, February 27, 2007

1) Write a class called Summation and store it in a file called Summation.java. Summation objects will be constructed with two integers. The first will represent the start of the summation and the second will represent the final value to be summed. Summation objects will hold two private members, i and j. Write a program that asks the user for two integers and then displays the sum of integers between these two integers inclusive. That is, your program will compute i + (i+1) + … + (j-1) + j. You must store your main routine in a file called UserSummation.java.

 The Summation class will have two methods:

 // Constructor taking two integer arguments

 // A method called total() that computes and returns the sum

2) Write a program that asks the user for two integers, i and j, and computes the product i * (i + 1) * … * (j-1) * j. Use the same approach as in question 1. The Multiplication class will be stored in a file called Multiplication.java and the main routine will be stored in UserMultiplication.java.

3) Create a class called ModulusTable and store it in a file called ModulusTable.java. ModulusTable objects will hold two private data members. These are the modulus and the table size. The constructor will be passed these two arguments when an object is constructed. The class will have one additional method called toString. The toString method will be public and will return a string representation of the table. The "\n" string will be used to represent a newline character. Write a program, placed in a separate file,that uses the ModulusTable class to generate the table. Your program will ask the user for an integer n and then displays a multiplication table modulus n. The table will begin with 1 * 1 mod n and will finish at 12 * 12 mod n.

4) Write a java class called CPUTimer. CPUTimer will have two constructors. The first will take three arguments: instruction count, cycles per instruction, and cycles per second. The second will take only two arguments: instruction count and seconds per instruction.

The CPUTimer class will have three additional methods. The signature of each is shown here:

 // returns the instruction count as stored in the object

 int getIC()

 // returns the seconds per instruction as stored in the object

 double getSPI()

 // returns the seconds per program

 double getSec()

The formula below will be helpful. Note that the seconds per instruction may be computed from cycles per instruction and seconds per cycle.

 time = Seconds = Instructions X cycles X seconds

 ======= ============ ====== ======

 Program Program instruction cycle

Write a menu driven program that uses CPUTimer objects. The user will be presented with three options. The first option, when selected, allows the user to enter three inputs. These are: Instruction Count (the number of instructions that will be executed by the program), Cycles Per Instruction (the average number of clock cycles that are needed by an individual instruction), and the speed of the clock (this number must be entered in MHz). The output must be in seconds. The second option allows the user to only enter two inputs. These are: Instruction Count and seconds per instruction. The output must be in seconds. The third option, when selected, ends the program. The user, after performing a calculation, should be allowed to perform another calculation without re-running the program.

5) Write a Die class that allows us to create Die objects. Each Die object will have three methods:

 public Die()

 // default constructor initializes value to 0

 public void roll()

 // selects a random integer between 1 and 6 and

 // stores the result in value

 int readResult()

 // returns the value of the last roll

Write a Dice class that allows us to roll a pair of dice. Your Dice class will have six methods:

 public Dice()

 // default constructor initializes total to 0

 public void roll()

 // Creates two die objects, calls roll() on each, reads the results into

 // the instance variables value1 and value2, adds the two values and

 // stores the result in the instance variable total.

 int readResult()

 // returns the total of the last dice roll.

 boolean pair()

 // returns true if the last two dice rolled were of the same value

 // and false otherwise

 boolean duces()

 // returns true if the last two dice rolled were of the same value

 // and that value was 1, false otherwise

 boolean sevens()

 // returns true if the last two dice rolled total to 7, false

 // otherwise.

Write a DiceExperiment class that allows a user to conduct dice experiments with a large number of rolls. Your class, DiceExperiment, will make use of the Dice class and will have the following three methods:

 public DiceExperiment(int numRolls)

 // establishes a dice experiment object to run numRolls times

 public void perform()

 // performs the experiment

 double getPercent(int i)

 // returns the percentage of rolls that totaled to i

Using the DiceExperiment class, write a program that asks the user for n (the number of rolls) and then simulates the rolling of the two dice n times. You must simulate the rolling of each die and then add to compute the total. When all the rolling is complete your program will draw a bar chart showing the respective frequency of each total. This is a console based application and needs no graphical user interface. Your program will use "*" characters to represent dice rolls. If the number 2 is rolled half as many times as 9 is rolled then 2 will have half as many stars. The number of stars that you use and the design of the output is up to you but must be well done and clear to the user. I recommend that you generate the same number of stars despite the number of requested rolls. That is, each star should represent a percentage of rolls.

