ENTERPRISE
IN A NUTSHELL

A Desktop Quick Reference

Jim Farley, William Crawford &
O, REILLY® David Flanagan

// Check for a null Base URI, and provider it if so
if((base = null) || (base.equals(*/serviet/")))
base = "http://www.oreilly.com/catalog/jentnut/";
if(href = null)
return null;
return new StreamSource(base + href);
}
}

Finally, JAXP supports XSLT transformations that can convert between DOM, SAX,
and streams, transform an XML document based on an XSL stylesheet, or both.

CHAPTER 10

Java Message Service

The standard Java networking APIs, as well as remote object systems such as RMI
and CORBA, operate by default under the assumption of synchronous communica-
tions. In other words, if a client makes a request of a remote server (e.g., opens a
socket and attempts to read some data from it, or makes a remote method call on
a remote object), the thread that made the request will block until the response
comes back from the server. In some situations, it might be necessary or useful to
engage in asynchronous communications, e.g., a client sends a request to the
server and then continues doing other work, while the server possibly invokes
some kind of callback on the client when the request is complete. This is where.-
the Java Message Service (JMS) comes in.

JMS is an API for performing asynchronous messaging. JMS is principally a client-
focused API, in that it provides a standard, portable interface for Java/J2EE clients
to interact with native message-oriented middleware (MOM) systems like IBM MQ
Series, Sonic MQ, etc. JMS isn't intended to be a platform for implementing a full
messaging system, since it doesn’t provide a service-provider interface for all of
the internals of a message-service implementation. In a sense, JMS plays a role
with native messaging systems that is analogous with the role that JDBC plays with
relational database systems, or the role JNDI plays with naming and directory
services. Java clients using JMS to interact with messaging systems can (ostensibly)
be more easily ported from one native messaging system to another, because they
are insulated from the proprietary particulars of the underlying vendor’s message
system.

The JMS API is provided in the javax.jms package. The material in this chapter is
based on Version 1.0.2b of the JMS specification, released in August 2001, which is
the most current version at the time of this writing. The examples in the chapter
have been tested against the JMS services embedded in Sun’s J2EE 1.3 Reference
Implementation and BEA’s WebLogic 6.1 application server. .

JMS in the J2EE Environment

The J2EE 1.2 specification requires that compliant J2EE - servers support only JMS
clients accessing external JMS providers. In other words, a J2EE 1.2 server only

described in detail next). So any compliant J2EE 1.3 serve
server capable of hosting its own message destinations.

Given this, the materia] concerning developing JMS clients is relevant regardless of
whether you are using a J2EE 1.2- or 1.3-compliant application server. The mate-
tial about the setup and configuration of JMS destinations requires a JMS provider,
50 you'll need a full JMS provider, either as part of a J2EE 1.3 server, an extended
J2EE 1.2 server, or as a standalone JMS server.

Elements of Messaging with JMS

The principle players in a JMS System are messaging clients, message destinations,
and a JMS-compatible messaging provider.
Messaging clients produce and consume messages. Typically messaging takes

place asynchronously; a client produces a message and sends it to gz message
destination, and some time later another client receives the message. Message

Messaging Styles: Point-to-Point and Publisb-Subscribe

Generally speaking, asynchronous messaging usually comes in two flavors: a
message can be addressed and sent to a single recejver oint-to-poind), or a
message can be published to particular channel or topic and any receiver that
subscribes to that channel will receive the message (publish-subscribe). These two

multicast networking) to the application level (email versus newsgroups).
Figure 10-1 depicts the two message models supported by JMS, as well as the key

324 Chaprer 10— Java Message Service .

I——

interfaces that come into play in a JMS cont
"interfaces later in the chapter.

Queve _

Message

Message

Message

Message

Figure 10-1: JMS message models

Most messaging providers suppc.)rt'one or 113\
provides support for them both in its APIf J
interfaces, described next. Each style of m
subclasses of these generic interfaces.

Key JMS Interfaces

The following key interfaces rel')res.ent th.e o
client application, whether it is usm%a‘
messaging. Information about all of the clas
JMS API can be found in Part IIL
Messagezsages are at the heart of JMS, natur
for their header fields, properties, .and
face provide implementations for differe

Messagelistener |
A Messagelistener is attached to a Mes:

a callback for each Message received l?y
the key to asynchronous message deliv:

nt

mpliant J2EE servers support only JMS
n other words, a J2EE 1.2 server only
mponents to interact with external JMS
S implementation of its own. J2EE 1.3
dl JMS provider, including support for
se message destinations (these are
t J2EE 1.3 server will have its own JMS
iestinations.

»ing JMS clients is relevant regardless of
:ompliant application server. The mate-
A4S destinations requires a JMS provider,
s part of a J2EE 1.3 server, an extended
‘er.

) JMS

messaging clients, message destinations,

messages. Typically messaging takes
a message and sends it to a message
client receives the message. Message
they can use a native messaging API to
ative message client (e.g., a client using
a message to a message destination, a
ystem is responsible forretrieving the
JMS message representation, and deliv-

MS clients send and receive messages
thin a JMS provider that manages all of
f the messaging system. At a minimum,
work address for a destination, allowing
work. But providers may also support
1s, such as persistence options, resource

and Publisb-Subscribe

\ging usually comes in two flavors: a
a single receiver (point-to-poins), or a
channel or topic and any receiver that
message (publish-subscribe). These two
ral levels in the distributed computing
el (standard TCP packet delivery versus
on level (email versus newsgroups).
sls supported by JMS, as well as the key

interfaces that come into play in a JMS context. We discuss the specifics of these
interfaces later in the chapter.

JMS provider

Queve

Message

Message

Destin;utions Message é:onsumers

=

Topic subscribe

ket

JMS provider ! Message &
Message

Message

Message
Message

Figure 10-1: JMS message models

Most messaging providers support oné or both of these messaging styles, so JMS
provides support for them both in its APL. JMS includes a set of generic messaging
interfaces, described next. Each style of messaging is supported by specialized
subclasses of these generic interfaces.

Key JMS Interfaces

The following key interfaces represent the concepts that come into play in any JMS
client application, whether it is using point-to-point or publish-subscribe
messaging. Information about all of the classes, interfaces, and exceptions in the
JMS API can be found in Part IIL

Message

" Messages are at the heart of JMS, naturally. Messages have accessor methods
for their header fields, properties, and body contents. Subtypes of this inter-
face provide implementations for different types of content. .

Messagelistener’
A Messagelistener is attached to a MessageConsumer by a client, and receives

a callback for each Message received by that consumer. Messagelisteners are
the key to asynchronous message delivery to clients, since the client attaches

Elements of Messaging with JMS 325

a listener to a consumer and then carries on with its thread(s) of control.
Messagelisteners must implement an onMessage() method, which is the call-
back used to notify the listener that a message has arrived.

ConnectionFactory

A ConnectionFactory creates connections to a JMS provider. Connection-
Factory references are obtained from a JMS provider through a JNDI lookup.
A QueueConnectionfactory creates connections in a point-to-point context;
TopicConnectionFactory creates connections in publish-subscribe contexts.

Destination

A Destination represents a network location, managed by a JMS provider,
that can be used to exchange messages. A JMS client sends messages to
Destinations, and attaches Messagelisteners to Destinations to receive
messages from other clients. A client obtains references to Destinations using
JNDI lookups. Queues and Topics are the Destinations in point-to-point and
publish-subscribe contexts, respectively.

Connection

A Connection is a live connection to a JMS provider, and is used for the
receipt and delivery of messages. Before a client can exchange any messages
with a JMS destination, it must have a live connection that has been started by
the client. A Connection is obtained from a ConnectionFactory using its

createXXXConnection() methods. The QueueConnectionFactory.
createQueueConnection() methods return QueueConnections, and the
TopicConnectionFactory.createTopicConnection() methods return

TopicConnections.

Session

A Session can be thought of as a single, serialized flow of messages between
a client and a JMS provider. A Session is used to create message consumers
and producers, and to create Messages that a client wishes to send. A Session
is used within a single thread of control on a client. Since a Session is only
accessed from within a single thread, the messages sent’ or received through
its consumers and producers are serialized with respect to the client. Sessions
also provide a context for defining transactions around message operations;
details on transactional messaging can be found in the section Transactional
Messaging. Sessions are created from Connections wusing their
createXXXSession() methods. The QueueConnection.createQueueSession()
method returns a . QueueSession, and the TopicConnection.
createTopicSession() method returns a TopicSession.

MessageProducer/MessageConsumer

MessageProducers and MessageConsumers are used to send and receive
messages from a destination, respectively. Producers and consumers are
created using various createXXX() methods on Sessions, using the target
Destination as the argument. In a point-to-point context, QueueSenders are
created using the QueueSession.createSender() method, and QueueReceivers
are created using the QueueSession.createReceiver() methods. In a publish-
subscribe context, TopicPublishers are created using TopicSession.
createPublisher(), and TopicSubscribers are created using TopicSession.
createSubscriber() and TopicSession.createDurableSubscriber() methods.

326 Chapter 10— Java Message Service

A Generic]MS Client

A JMS client follows the same generali
whether it's using point-to-point of pu

walk through these steps here, using the
strate. For the most part, the same ps“e1
subscribe interfaces by just substituting “1

- this section.

General setup

The very first step for 2 JMS client i_s tq
the JNDI service of the JMS prov1d63'.‘
obtaining a JNDI Context can be found i
create an InitiaiContext usir-lg a set_ ol
type of the JNDI service associated with
i OpPS = +ee3

E;(r)l?‘.z;? iixpi ?1ew InitialContext()
Next, the JMS client needs t9 acquire a
using a JNDI lookup. The chent. would
used to publish the Conne_ctwnFe.]ctc
QueueConnectionFactory registered in JI

i Factory =
0ueueConnect1onFactory q
(QuiueConnecti onFactory)ctx.loc

An administrator would have to set
provider and associate it with this JNDI

The dlient also uses JNDI to t-“md Des
Here, we look up a Queue published w

Queue queue = (Oueue)ctx.lookup(

Once we have & ConnectionFa.ctory a
need to create a Connection with theq
through which messages will be physi
be started before messages can be
always be used to send messages, I¢
Normally, a client won't start() a
process messages. Here, we use .
QueueConnection, and defer starting
receive messages:

QueueConnection qunn = gFactor

Client identifiers

i tion t
When a client makes a conn.ec .
ated with the client. The c_hent ide
provider on behalf of the client, and

-ries on with its thread(s of control.
nMessage() method, which is the call-
essage has arrived.

jons to a JMS provider. Connection-
. JMS provider through a JNDI lookup.
anections in a point-to-point context
ctions in publish-subscribe contexts.

location, managed by a JM3 provider,
ges. A JMS client sends messages tO
isteners to Destinations to receive
stains references to Destinations using
the Destinations in point-to-point and

r

y a JMS provider, and is used for the
yre a client can exchange any messages
live connection that has been started by
| from a ConnectionFactory using its

The QueueConnectionfactory.
return QueueConnections, and the
Connection() methods return

le, serialized flow of messages between
»n is used to create message CONSUMErs
; that a client wishes to send. A Session
rol on a client. Since a Session is only

the messages sent or received through
lized with respect to the client. Sessions
ransactions around message operations;
n be found in the section Transactional
d from Connections using their
QueueConnection.createQueueSession()
ion, and the TopicConnection.
s a TopicSession.

umers are used to send and receive
sctively. Producers and consumers ar¢
methods on Sessions, using the target

point-to-point context, QueueSenders are .

teSender() method, and QueueReceivers
-reateReceiver() methods. In a publish-
s are created using TopicSession.
ribers are created using TopicSession.
on.createDurableSubscriber() methods.

A Generic JMS Client

A JMS client follows the same general sequence of operations, regardless of
whether it's using point-to-point or publish-subscribe messaging, or both. We'll
walk through these steps here, using the point-to-point JMS interfaces to demon-
strate. For the most par, the same pseudocode can be used with the publish-
subscribe interfaces by just substituting “Topic” for “Queue” in the code samples in
this section.

General setup

The very first step for a JMS client is to get a reference to an InitialContext for
the JNDI service of the JMS provider. Full details on the various options for
obtaining a JNDI Context can be found in Chapter 7, but in general, the client will
create an InitialContext using a set of Properties that specify the location and
type of the JNDI service associated with the JMS provider:

Properties props = ...;

Context ctx = new InitialContext(props);
Next, the JMS client needs to acquire 2 ConnectionFactory from the JMS provider
using a JNDI lookup. The client would have to know what name the JMS provider
used to publish the ConnectionFactory in JNDI space. Here, we lookup a
QueueConnectionFactory registered in JNDI under the name “jms/someQFactory”:

QueueConnectionFactory qFactory =
(QueueConnectionFactory)ctx. Tookup("jms/someQFactory™);

An administrator would have to set up this ConnectionFactory on the JMS
provider and associate it with this JNDI name on the server.

The client also uses JNDI to find Destinations published by the JMS provider.
Here, we look up a Queue published under the JNDI name “jms/someQ”: .

Queue queue = (Queue)ctx.Tookup("jms/someQ");

Once we have a ConnectionFactory and one or more Destinations to talk to, we
need to create a Connection with the JMS provider. This Connection is the conduit
through which messages will be physically sent and received. A Connection has to
be started before messages can be received through it, but a Connection can
always be used to send messages, regardless of whether it's started or stopped.
Normally, a client won't start{) a Connection until it's ready to receive and
process messages. Here, we use our QueueConnectionfFactory to create a
QueueConnection, and defer starting it until we create a MessageConsumer to
receive messages:

QueueConnection qConn = gFactory.createQueueConnection(...);

Client identifiers

When a client makes a connection to a JMS provider, a client identifier is associ-

~ ated with the client. The client identifier is used to maintain state on the JMS

provider on behalf of the client, and the state data can persist beyond the lifetime

Elements of Messaging with JMS 327

of a client connection. The server-side state can be retrieved for the client when it
reconnects using the same client ID. The only client state information defined by
the JMS specification is durable topic subscriptions (described in the section
“Durable Subscriptions™), but a JMS provider may support its own state informa-
tion on behalf of clients as well. Only one client is allowed to be associated with a
client ID (and its state information) on the JMS provider, so only a single connec-
tion with a given client ID can be made to a JMS provider at any given time.

The JMS client identifier can be set in two ways. A client can set a client ID on any
Connections that it makes with the JMS provider, using the Connection.
setClientID() method:

gConn.setClientID("client-1");

Again, only a single connection with a given client ID is allowed at any given
time. If a client with this same client ID (even this one) already has a connection
with the client ID, then an InvalidClientIDException will be thrown when
setClientID() is called. Alternatively, a ConnectionFactory can be configured on
the JMS provider with a client ID that is applied to any Connections that are
created through it. The ConnectionFactory interface doesn’t provide a facility for
the client to set the factory’s client ID; this is a function that would have to be
provided in the JMS provider’s administrative interface. A ConnectionFactory with
a preset client ID is, by definition, intended to be used by a single clien.

Autbenticated connections

When a client creates a connection, they have the option to provide a username
and password that will be authenticated by the JMS provider. This is done using
overloaded versions of the createXXXConnection() methods on a Connection-

Factory. We can create an authenticated QueueConnection, for example, with a
call like this: '

QueueConnection authQConn =
gFactory.createQueueSession("JimFarley", "myJMSPassword");

If this is successful, the client will operate under the given principal name and be
given the appropriate rights. JMS providers aren’t required to support authentica-
tion of connections. If a JMS provider does support authenticated connections, the
principals and access rights will be administered on the JMS server.

Sessions

Once a connection to the JMS provider is established, we need to create one or
more Sessions to be used to send and receive messages. Again, Sessions are a
single-threaded context for handling messages, so we need a separate Session for
each concurrent thread that we plan to use for messaging. Sessions are created
from Connections. Here, we create a QueueSession from our QueueConnection:

QueueSession gSess =
gConn.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

When creating either QueueSessions or TopicSessions, there are two arguments
used to create the Session. The first is a boolean flag indicating whether we want
the Session to be transacted. (See the section “Transactional Messaging” for details

328 Chapter 10— Java Message Service

on transactional sessions.) The second
Session to acknowledge received messag
options for the acknowledge mode of

static final values on the Session class:

Session.AUTO_ACKNOWLEDGE
This instructs the Session to ackn
client. A message is acknowledg
MessageListener handles the messa
until the listener's onMessage() me
because of a call to receive() on a
ment is sent immediately after the cz

Session.DUPS_OK_ACKNOWLEDGE .
This option instructs the Sess1o'r
acknowledgments can be delayed i
lead to a message being delivered
between delivery and acknowledg
timeout and it assumed the message

Session.CLIENT_ACKNOWLEDGE
This option is used when the
messages, by calling the acknowleds

Sending messages

Messages are sent to Destinations us
from Sessions. When they are cre
Destination, and any Messages sent
Destination using the Connection from

In a point-to-point context, the messa,
from QueueSessions using the Queue the

QueueSender gSender = gSess.creat

Once a producer has been created,
Messages to be sent. Messages are also
TextMessage from our QueueSession, a
text we want to send to the Queue:

TextMessage tMsg = qSe§s.creatET'
tMsg.setText(“The sky 1s blue.")

To actually send the message, wWe sim
MessageProducer. Here, we call send()

qSender.send(tMsg) H

Note that it’s not necessary to ensure
we generated our Session) is starter
Connection is only required to cc
Destination to the client.

e can be retrieved for the client when it
only client state information defined.by
subscriptions (described in the section
der may support its own state informa-
client is allowed to be associated with a
= JMS provider, so only a single connec-
. a JMS provider at any given time.

ways. A client can set a client ID on any
JMS provider, using the Connection.

given client ID is allowed at any gi\{en
‘even this one) already has a connection
ientIDException will be thrown when
sonnectionFactory can be configured on
is applied to any Connections that are
ry interface doesn’t provide a facility for
his is a function that would have to be
tive interface. A ConnectionFactory with
«d to be used by a single client.

* have the option to provide a username
by the JMS provider. This is done using
mnection() methods on a Connection-
d QueueConnection, for example, with a

Zarley", "myJMSPassword");

e under the given principal name and be
ers aren't required to support authentica-
es support authenticated connections, the
ristered on the JMS server.

is established, we need to create one or
receive messages. Again, Sessions are a
isages, so we need a separate Session for
use for messaging. Sessions are created
ueSession from our QueueConnection:

Session,AUTO_ACKNOWLEDGE) ;

TopicSessions, there are two arguments v
. boolean flag indicating whether we want .

ction “Transactional Messaging” for details

on transactional sessions.) The second argument. indicates how we want the
Session to acknowledge received messages with the JMS provider. There are three
options for the acknowledge mode of a Session, and they are specified using
static final values on the Session class:

Session.AUTO_ACKNOWLEDGE
This instructs the Session to acknowledge messages automatically for the
client. A message is acknowledged when received by the client. If a
Messagelistener handles the message, then the acknowledgment is not sent
until the listener’s onMessage() method returns. If the message is received
because of a call to receive() on a MessageConsumer, then the acknowledge-
ment is sent immediately after the call to receive() returns.

Session.DUPS_OK_ACKNOWLEDGE
This option instructs the Session to do “lazy acknowledgment,” where
acknowledgments can be delayed if the Session decides to do so. This could
lead to a message being delivered to a client more than once, if the delay
between delivery and acknowledgment is longer than the JMS provider’s
timeout and it assumed the message was never received.

Session.CLIENT_ACKNOWLEDGE i
This option is used when the client wants to manually acknowledge
messages, by calling the acknowledge() method on the Message.

Sending messages

Messages are sent to Destinations using MessageProducers, which are created
from Sessions. When they are created, producers are associated with a
Destination, and any Messages sent using the producer are delivered to that
Destination using the Connection from which the Session was generated.

In a point-to-point context, the message producers are QueueSenders, generated
from QueueSessions using the Queue the sender should point to:

QueueSender gSender = qSess.createSender(queue);

Once a producer has been created, the client needs to create and initialize
Messages to be sent. Messages are also created from a Session. Here, we create a
TextMessage from our QueueSession, and set its text body to be some interesting
text we want to send to the Queue:

TextMessage tMsg = gSess.createTextMessage();
tMsg.setText("The sky is blue.");

To actually send the message, we simply invoke the appropriate method on our
MessageProducer. Here, we call send() on our QueueSender:

gSender.send(tMsg) ;

Note that it’s not necessary to ensure that the underlying Connection (from which
we generated our Session) is started in order to send messages. Starting the
Connection is only required to commence delivery of messages from the
Destination to the client.

Elements of Messaging with JMS 329

Receiving messages

Receiving messages involves creating a MessageConsumer that is associated with a
particular Destination. This establishes a consumer with the JMS provider, and the
provider is responsible for delivering any appropriate messages that arrive at the
Destination to the new consumer. MessageConsumers are also generated from
Sessions, in order to associate them with a serialized flow of messages. In a point-
to-point context, a QueueReceiver is generated from a QueueSession using its
createReceiver() methods. Here, we simply create a new receiver tied to our
Queue. Other options for creating QueueReceivers are discussed in “Point-to-Point
Messaging.”

QueueReceiver qReceiver = gSess.createReceiver(queue);

By creating a MessageConsumer, all we've done is told the JMS provider that we
want to receive messages from a particular Destination. We haven't specified
what to do with the Messages on the client side. Since JMS is an asynchronous
message delivery system, it uses the same listener pattern that is used in Swing
GUI programming or JavaBeans event handling (two other asynchronous event
contexts). Messages in JMS are processed using Messagelisteners. A client needs
to implement a Messagelistener with an onMessage() method that does some-
thing useful with the Messages coming from the Destination. Example 10-1 shows
a basic Messagelistener—a Textlogger that simply prints the contents of any
TextMessages it encounters.

Example 10-1: Simple MessageListener Implementation

import javax.Jjms.*;

public class TextLogger implements Messagelistener {
// Default constructor
public Textlogger() {}

// Message handler
public void onMessage(Message msg) {
/7 If it's a text message, print it to stdout
if (msg instanceof TextMessage) {
TextMessage tMsg = (TextMessage)msg;
try { .
. System.out.printin("Received message: " + tMsg.getText());
} .
catch (JMSException je) {
System.out.printIn("Error retrieving message text: " +
je.getMessage());
}
}
// For other types of messages, print an error
else {
System.out.printin("Unsupported message type encountered.");
}
}
}

330 Cbhapter 10— Java Message Service

Once a Messagelistener has been defin
register it with a MessageConsumer. In ou1:
TextLoggers and associate it wi

- setMessagelListener() method:

Messagelistener listener = new‘Text
qRecei ver.setMessageListener(listen

It's important to remember that no mest
lying Connection until it's been startgd.]
QueueConnection but never started it, s
Messages to our QueueReceiver, and from

gConn.start();

Temporary destinations

A client can create its own temporary ¢
are visible only to the Connection that ¢
tion of the Connection used to crc?ate 'the
only for the life of the Connection it ¥
methods on the Session..For example, «

Queue tempQueue = gSession.createl

Temporary destinations can be used,
messages that are sent with a JMSRepiy Tt

TextMessage request = gSession.cre

request.setJMSRep] yTo{tempQueue);
They can also be used to exchanging a
the same client.

Cleaning up

Connections and Sessions require resc
(similar to how JDBC connections use
idea to free them up explicitly when yo

Sessions are closed by simply calling cl
qSess.close();

‘When a Session is closed, all Message(

with it are rendered unusable. If you tr

provider, they will throw an 111egal!

will block untii any pending pro
Messagelistener's onMessage() methc

Closing a Session doesn’t close the 1
You can close one Session and open
active. To close a Connection and free

method:
gConn.close();

;sageConsumer that is associated with a
>nsumer with the JMS provider, and the
appropriate messages that arrive at the
ageConsumers are also generated from
serialized flow of messages. In a point-
erated from a QueueSession using its
iply create a new receiver tied to ‘our
:eivers are discussed in “Point-to-Point

teReceiver(queue);

done is told the JMS provider that we
lar Destination. We haven't specified
nt side. Since JMS is an asynchronous
: listener paitern that is used in Swing
ndling (two other asynchronous event
1sing Messagelisteners. A client needs
onMessage() method that does some-
n the Destination. Example 10-1 shows
‘hat simply prints the contents of any

2mentation

jelistener {

to stdout
3

sage: " + tMsg.getText(}));

ving message text: " +
());

t an error

ssage type encountered.");

Once a Messagelistener has been defined, the client needs to create one and
register it with a MessageConsumer. In our running example, we create one of our
Textloggers and associate it with our QueueReceiver using its
setMessageListener() method:

MessagelListener Tistener = new Textlogger();
qReceiver.setMessagetistener(listener);

It's important to remember that no messages will be -delivered over our under-
lying Connection until i’s been started. In our running example, we created our
qQueueConnection but never started it, so we do that now to start delivery of
Messages to our QueueReceiver, and from there to our TextlLogger listener:

gConn.start();

Temporary destinations

A client can create its own temporary destinations, which are Destinations that
are visible only to the Connection that created it, and that only live for the dura-
tion of the Connection used to create them. Although a temporary destination lives
only for the life of the Connection it was created from, they are created using
methods on the Session. .For example, to create a TemporaryQueue:

Queue tempQueue = gSession.createTemporaryQueue();

Temporary destinations can be used, for example, to receive responses to
messages that are sent with a JMSRep1yTo header;

TextMessage request = gSession.createTextMessage();
request.setJMSReplyTo(tempQueue);

They can also be used to exchanging asynchronous messages between threads in
the same client.

Cleaning up

Connections and Sessions require resources to be allocated by the JMS provider
(similar to how JDBC connections use up resources on a RDBMS), so it’s a good
idea to free them up explicitly when you are done with them.

Sessions are closed by simply calling close() on them:
gSess.close(};

When a Session is closed, all MessageConsumers and MessageProducers associated
with it are rendered unusable. If you try to use them to communicate with the JMS
provider, they will throw an I17egalStateException. A call to Session.close()
will block until any pending processing of incoming Messages (e.g, a
MessagelListener's onMessage() method) is complete.

Closing a Session doesn’t close the underlying Connection from which it came.
You can close one Session and open up another one as long as the Connection is
active. To close a Connection and free up its server-side resources, call its close()
method:

gConn.close();

Elements of Messaging with JMS 331

All Sessions (and, subsequently, all of their consumers and producers) generated
from a Connection become unusable once it is closed. The call to Connection.
close() will block until incoming Message processing has completed on all of the
Sessions associated with it.

The Anatomy of Messages

Creating a2 messaging-based application involves more than establishing communi-
cation channels between participants. Players in a message-driven system need to
understand the content of the messages and know what to do with them.

Native messaging systems, such as IBM MQ Series or Microsoft MQ (MSMQ),
define their own proprietary formats for messages. JMS attempts to bridge these
native messaging systems by defining its own standard message format. All JMS
clients can interact with any messaging system that supports JMS. “Supports” in
this case can mean one of two things. The messaging system can be implemented
in a native, proprietary architecture, with a JMS bridge that maps the JMS message
formats (and other aspects of the JMS specification) to the native scheme and back

again. Or, the messaging system can be written to use the JMS message format as
its native format.

JMS messages are made up of a set of standard header fields, optional client-
defined properties, and a body. JMS also provides a set of subclasses of Message
that support various types of message bodies.

Message Header Fields and Properties

Table 10-1 lists the standard header fields that any JMS message can have. The
table indicates the name and type of the field, when the field is set in the message
delivery process, and a short description of the semantics of the field.

Table 10-1: Standard JMS Message Headers

Field Name Data Type When Set | Description
JMSCorrelationID | String Before Correlates multiple messages. This
send field can be used in addition to the
) JMSMessagelD header as an applica-
tion-defined message identifier
(MSMessagelDs are assigned by the
provider).
JMSDestination Destination During Indicates to the message receiver
send which Destination the Message was
sent to.
JMSDeliveryMode int ! During Indicates which delivery mode to use

send to deliver this message,
DeliveryMode.PERSISTENT or
DeljveryMode.NON_PERSISTENT.
PERSISTENT delivery indicates that the
messaging provider should take
measures t0 ensure that the message -
is delivered despite failures on the
JMS server. NON_PERISTENT delivery
doesn't require the provider to
deliver the message if a failure occurs
on the JMS server.

332 Chapter 10- Java Message Service

Table 10-1: Standard JMS Message Heade

" Field Name Data Thype Wb?
JMSExpiration Tong]SDClIJ'lI(-;
in Dur
JMSMessagelD String Dur
iori i Du
JMSPriority int Dus
i olean Bel
JMSRedelivered bo bel
Destination Be
JMSReplyTo Be
Du

i on
JMSTimestamp 1_ g Dy
’ trin Be
JMSType S] Be

These standard message headers are .
sors on the Message interface. ”Fhe J
setIMSTimestamp(), and read using g¢

1eir consumers and producers) generated
«ce it is closed. The call to Connection.
je processing has completed on all of the

avolves more than establishing communi-
tyers in a message-driven system need to
nd know what to do with them.

1 MQ Series or Microsoft MQ (MSMQ),
* messages. JMS attempts to bridge these
s own standard message format. All JMS
system that supports JMS. “Supports” in
1€ messaging system can be implemented
a JMS bridge that maps the JMS message
acification) to the native scheme and back
written to use the JMS message format as

f standard header fields, optional client-
> provides a set of subclasses of Message
dies.

yperties

ds that any JMS message can have. The
field, when the field is set in the message
of the semantics of the field.

rs

n Set | Description

re Correlates multiple messages. This
field can be used in addition to the
JMSMessagelD header as an applica-
tion-defined message identifier
(JMSMessagelDs are assigned by the

providen).

g Indicates to the message receiver
which Destination the Message was
sent to.

g Indicates which delivery mode to use

to deliver this message,
DeliveryMode PERSISTENT or
DelqiveryMode.NON_PERSISTENT.
PERSISTENT delivery indicates that the
messaging provider should take -
measures to ensure that the message
is delivered despite failures on the
JMS server. NON_PERISTENT delivery
doesn't require the provider to
deliver the message if a failure occurs
on the JMS server.

Table 10-1: Standard JMS Message Headers (continued)

Field Name Data Type When Set | Description
JMSExpiration Tong During The time the message will expire on
send the provider. If no client receives the

message by this time, the provider
drops the message. It is calculated as
the sum of the current time plus the
time-to-live of the MessageProducer
that sent the message. The value is
given in milliseconds since the epoch
(January 1, 1970, 00:00:00 GMT). A
value of zero indicates no expiration

time.
JMSMessagelD String During A unique message ID assigned by the
send provider. Message Ids always start

with the prefix “ID:". These IDs are
unique for a given JMS provider.
Applications can set their own
message identifier using the
JMSCorrelationID header.

JMSPriority int During A provider-assigned value indicating
send the priority with which the message
will be delivered. JMS providers
aren't required to implement strict .
pricrity ordering of messages. This
field is simply a “hint” from the server
about how the message will be
handled. Message priorities and how
they are assigned are determined by
the configuration of the JMS provider.

JMSRedelivered -boolean Before A provider-provided value that indi-
delivery cates to the receiver that the message
may have been delivered in the past
with no acknowledgment from the
client. On the sender, this header
value is always unassigned.

JMSReplyTo Destination Before A Destination, set by the sending
send client, indicating where a reply
message should be sent.
JMSTimestamp long During The time at which the message was
send handed off to the JMS provider to be

sent. This value is given in millisec-
onds since the epoch (January 1,
1970, 00:00:00 GMT).

JMSType String Before A message type, set by the sending
send client. Some JMS providers require

. that this header be set, so it's a good
idea to set it even if your application
isn't using it. Some JMS providers also
allow an administrator to configure a
set of message types that will be
matched against this header, and
used to selectively set handling of the
message based on its type.

These standard message headers are read and written using corresponding acces-
rs on the Message interface. The JMSTimestamp field, for example, is set using
tIMSTimestamp(), and read using getIMSTimestamp().

The Anatomy of Messages 333

A client can also create its own custom
generic property accessors on the Messa
can be boolean, byte, short, int, long,
are accessed using corresponding get/

booTean header can be set using the setBooleanProperty() method, for example.
Each custom property has to be given a unique name, specified when the value is
set. For example, we could set a custom boolean property with the name
“reviewed” on a message, like so: ‘

TextMessage tMsg = vees :

tMsg. setBooleanProperty("reviewed", false);

Custom property names have certain restrictions on them. They have to be valid
Java identifiers, they can’t begin with “IMSX” or “JMS_"
defined and vendor-
following reserved

(these are reserved for JMS-
defined properties, respectively), and they can’t be one of the
words: NULL, TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, IS, or
ESCAPE. Custom property names are also case-sensitive, so “reviewed” isn't the
same property as “Reviewed.”

JMS Message Types

To support various application scenarios, JMS provides the following subclasses of
Message, each providing a different type of message body.

TextMessage

Arguably the most popular type of Message, this has a body that is a simple
String. The format of the String contents is left to the application to inter-
pret. The String may contain a simple informational phrase, it may contain
conversational text input by a user in a collaboration a
contain formatted text such as XML.

BytesMessage

pplication, or it may

This type of message contains an array of bytes as its body. BytesMessages
can be used to send binary data in a message, and/or it can be used to wrap
a native message format with a JMS message.

ObjectMessage

The body of this message is a serialized Java object.
MapMessage

The body of this message is a set of name/value pairs. The names are
Strings, and the values are Java primitive types, like double, int, String, etc.
The values of the entries are accessed using get/setXXX() methods on
MapMessage. Note that these entries are stored in the body of the message:
they aren’t message header properties and can't be used for message selec-
tion (see the section “Filtering Messages”).
StreamMessage

A StreamMessage contains a stream of

Java primitive data types (double, int,
String,

etc.). Data elements are written sequentially to the body of the
message using various writeXXX() methods, and they are read sequentially on

the receiving end using corresponding readXXX() methods. If the receiver

334 Chapter 10 - Java Message Service

properties on a Message, using a set of
ge interface. Custom message properties
float, double, or String values, and they
setXXXProperty() methods on Message. A

doesn't know the types of data in the :
the readObject() method:
StreamMessage sMsg = ool
Object item = sMsg.readObject() .
if (item instanceof Floa'g) { _
float fData = ((Float)item).f

}

Accessing Message Content

When a client receives a Messagfe, its bod
body of a received Message will cause
thrown.

When a message sender first crea.tes a Mel
unset. For TextMessages and ObjectMes:
with a null value, and for. MapMessac;;eSsJc
message body. For BytesMessages 3}.)1’) o
only mode, and they can't be read by
method. If you create a BytesMessage (')1
‘body content before calling reset() on 1
thrown.

Message's body can be emptlec.l by
?TearBody() method. This reverts its blc
affect any of the header or property va
on a BytesMessage or StreamMessage pu
until a subsequent call to BytesMessag
made. The sender can clear any cus;oai
clearProperties() meth_od. The stabr: ;
using their specific accessors on .the eS¢
call clearBody(), c]earProp(?rhe.s(), ¢
the Message is read-only at this point.

Filtering Messages

i icipants to s

MS allows messaging p.arF1c1p :
Jfrom a JMS provider. This is done using
that filter messages based on the valu_es
ties. The syntax of message selectors is L

A message selector is associ?.ted with aS
Session. Each type of Session (Queue
versions of their consumer create me
String argument. For example, the
receives only messages that _have a ct;st
whose JMSType header field is acknowle

String selector = "JMSType = 'ack

QueueReceiver receiver = qSessior

properties on a Message, using a set of
je interface. Custom message properties
loat, double, or String values, and they
tXXXProperty() methods on Message. A
ooleanProperty() method, for example.
nique name, specified when the value is
tom boolean property with the name

false);

rictions on them. They have to be valid
X" or “IMS_” (these are reserved for JMS-
spectively), and they can't be one of the
SE, NOT, AND, OR, BETWEEN, LIKE, IN, IS, or
> case-sensitive, so “reviewed” isn't the

JMS provides the following subclasses of
f message body.

essage, this has a body that is a simple
ntents is left to the application to inter-
sle informational phrase, it may contain
n a collaboration application, or it may

-ay of bytes as its body. BytesMessages
message, and/or it can be used to wrap
essage.

:d Java object.

of name/value pairs. The names are
itive types, like double, int, String, etc.
ssed using get/setXXX() methods on
ire stored in the body of the message:
s and can’t be used for message selec-
25”).

f Java primitive data types (double, int,

itten sequentially to the body of the

thods, and they are read sequentially on

ng readXXX() methods. If the receiver

doesn’t know the types of data in the message, they can be introspected using
the readObject () method:

StreamMessage sMsg = ...;
Object item = sMsg.readObject();
if (item instanceof Float) {
float fData = ((Float)item).floatValue()]

}...

Accessing Message Content

When a client receives a Message, its body is read-only. Attempting to change the
body of a received Message will cause a MessageNotWriteableException to be
thrown.

When a message sender first creates a Message object, the body of the Message is
unset. For TextMessages and ObjectMessages, this means that their body starts
with a null value, and for MapMessages this means there are no entries in the
message body. For BytesMessages and StreamMessages, their bodies start in write-
only mode, and they can’t be read by the sending client until it calls their reset()
method. If you create a BytesMessage or StreamMessage and attempt to read its
body content before calling reset() on it, a MessageNotReadableException will be
thrown.

A Message's body can be emptied by the sender at any point by calling its
clearBody() method. This reverts its body back to its initial state, but doesn’t
affect any of the header or property values on the Message. Calling clearBody()
on a BytesMessage or StreamMessage puts their body back into write-only mode,
until a subsequent call to BytesMessage.reset() or StreamMessage.reset() is
made. The sender can clear any custom properties on a Message by calling its
clearProperties() method. The standard JMS header fields have to be updated
using their specific accessors on the Message interface. Receivers of messages can’t
call clearBody(), clearProperties(), or reset() on a received Message, since
the Message is read-only at this point.

Filtering Messages

JMS allows messaging participants to selectively filter what Messages it receives
from a JMS provider. This is done using message selectors, which are expressions
that filter messages based on the values found in their headers and custom proper-
ties. The syntax of message selectors is based on SQL92 conditional expressions.

A message selector is associated with a MessageConsumer when it is created from a
Session. Each type of Session (QueueSession and TopicSession) has overloaded
versions of their consumer create methods that take a message selector as a
String argument. For example, the following creates a QueueReceiver that
receives only messages that have a custom property named transaction-type and
whose JMSType header field is acknowledge:

String selector = "JMSType = 'acknowledge’
AND transaction-type IS NOT NULL";
QueueReceiver receiver = gSession.createReceiver(queue, selector);

The Anatomy of Messages 335

Message filtering is performed by the JMS provider. When the provider deter-
mines that a message should be delivered to a particular MessageConsumer, based
on the rules of the particular message context (point-to-point or publish-
subscribe), it first checks that consumer's message selector, if one exists, If the

* selector evaluates to true when the message’s headers and properties are applied
to it, then the message is delivered; otherwise it isn't. Undelivered messages are
handled differently, depending on the message context, as described in the
following sections.

Point-to-Point Messagi ng

Point-to-point messaging involves the sending of messages from one or more
senders to a single receiver through a message queue. Point-to-point messaging is
analogous to email messaging: a client delivers a message to a named mailbox
(queue), and the owner of the mailbox (queue) reads them in the order they were
received. Queues attempt to maintain the send order of messages generated by the
sender(s) attached to them. In other words, if sender A sends messages Al, A2,
and A3, in that order, to a queue, then the receiver attached to the queue will

receive message 2 after message 1, and message 3 after message 2 (assuming that -

no message selectors filter out any of these messages). If there are multiple
senders attached to a queue, then the relative order of each individual sender is
preserved by the queue when it delivers the messages, but the queue doesn’t
attempt to impose a predefined absolute order on the messages across all senders.
So if there is another sender, B, attached to the same queue as A, and it sends
messages Bl, B2, and B3, in that order, then the receiver will receive B2 after B1,
and B3 after B2, but the messages from sender A may be interleaved with the
messages from sender B. The receiver may receive the messages in order Al, A2,
B1, A3, B2, B3, the messages may be delivered in order B1, B2, B3, Al, A2, A3, or
some other order altogether. There is nothing in the JMS specification that dictates
how a JMS provider should queue messages from multiple senders.

Point-to-point messaging is performed in JMS using the queue-related interfaces
and classes in the javax.jms package. Queues are represented by Queue objects,
which are looked up in JNDI from the JMS provider. QueueConnecti onFactory
_ objects are looked up in JNDI as well, and used to create QueueConnections.
QueueConnections and Queues are used to create QueueSessions, which are in turn
used to create QueueSenders and QueueReceivers.

Sample Client

Example 10-2 shows a full point;to-point messaging client. The
PTPMessagingClient is capable of sending and receiving a message from a given
queue, as well as browsing the current contents of the queue.

Example 10-2: Point-to-Point Messaging Client

import java.util.*;
import javax.naming.*;
import javax.jms.*;
import java.io.*;

336 Chapter 10~ Java Message Service

public class PTPMe

‘ Example 10-2: Point-to-Point Messaging Clier

ssagingClient implements

the JMS provider.

r connection to er.
o jon mQueueConn = nu

private QueueConnect

// The queue used for message-passing
private Queue mQueue = null;

// Our message receiver - or_ﬂy nEed ?qe
private QueueReceiver mReceiver = nuil;

// A single session for ser}ding anc]i1r:e(
private QueueSession mSession = nuil;

11 our mes

// The message type we tag a [e

private static String MSG_TYPE =

i 1ient name, and

// Constructor, with ¢
// connection factory and queue th?:t :
public PTPMessagingC]1'ent(Str1ng cfac
init(cFactoryJNDIName, queueJNDIName

}

// Do all the JMS-setup fgr tr}is'chrg

// configured (perhags using Jndjm[s)

// InitialContext po1.nts tg the tolr)-

protected boolean init(String cfac
boolean success = true;

© context ctx = nuil;
// Attempt to make con

try { .
)étx = new InitialContext();

nection to Jt

} 2
i) {
catch (Namngxceptwr] ne
System.out.print]n('Faﬂed to co

ne.pri ntStackTrace()s
success = false;
}

// 1f no JINDI context, bail.out he
if (ctx = nulh) | .
return Success;

}

JMS connecti
// Attempt to lookup
QueueConnectionFactory connFactor

ry { .
')éonnFactory = (QueueConnectiont

System.out.print]n("Got JMS cot

} .
catch (NamingException ne2) {

e

provider. When the provider deter-
» a particular MessageConsumer, based
context (point-to-point or publish-
tessage selector, if one exists. If the
’s headers and properties are applied
se it isn’t. Undelivered messages are
ssage context, as described in the

ng of messages from one or more
je queue. Point-to-point messaging is
rers a message to a named mailbox
le) reads them in the order they were
d order of messages generated by the
if sender A sends messages Al, A2,
receiver attached to the queue will

age 3 after message 2 (assuming that .

se messages). If there are multiple
e order of each individual sender is
le messages, but the queue doesn't
r on the messages across all senders.
the same queue as A, and it sends
the receiver will receive B2 after B1,
ader A may be interleaved with the
:ceive the messages in order Al, A2,
d in order B1, B2, B3, Al, A2, A3, or
in the JMS specification that dictates
-om multiple senders.

S using the queue-related interfaces
es are represented by Queue objects,
5 provider. QueueConnectionFactory
1 used to create QueueConnections.
ate QueueSessions, which are in turn
ers.

-point messaging client. The
d receiving a message from a given
ts of the queue.

Example 10-2: Point-to-Point Messaging Client (continued)

public class PTPMessagingClient implements Runnable {

// Our connection to the JMS provider. Only one is needed for this client.
private QueueConnection mQueueConn = null;

J/ The queue.used for message-passing
private Queue mQueue = null;

// Our message receiver - only need one.
private QueueReceiver mReceiver = null;

// A single session for Sending and receiving from all remote peers.
private QueueSession mSession = null;

// The message type we tag all our messages with
private static String MSG_TYPE = "JavaEntMessage"”;

// Constructor, with client name, and the JNDI locations of the JMS

// connection factory and queue that we want to use.

public PTPMessagingClient(String cFactoryJNDIName, String queueJNDINamé) {
init(cFactoryJNDIName, queueJNDIName);

}

// Do all the JMS-setup for this client. Assumes that the JVM is

// configured (perhaps using jndi.properties) so that the default JNDI

// InitialContext points to the JMS provider's JNDI service.

protected boolean init(String cFactoryJNDIName, String queueJNDIName) {
boolean success = true;

Context ctx = null;

// Attempt to make connection to JNDI service

try {

ctx = new InitialContext(); i

}

catch (NamingException ne) {
System.out.printin("Failed to connect to JNDI provider:");
ne.printStackTrace(); '
success = false;

}

// 1f no JNDI context, bail.out here
if (ctx = null) {

return success;
}

// Attempt to lookup JMS connection factory from JNDI service
_QueueConnectionFactory connFactory = null;
iry { '
connFactory = (QueueConnectionFactory)ctx.lookup(cFactoryJNDIName);
System.out.printin{"Got JMS connection factory.");
}
- catch (NamingException ne2) {

Point-to-Point Messaging 337

Example 10-2: Point-to-Point Messaging Client (continued)

}

System.out.printIn("Failed to get JMS connection factory: ");
ne2.printStackTrace();
success = false;

}

try {
// Make a connection to the JMS provider and keep it.
// At this point, the connection is not started, so we aren't
// receiving any messages.
mQueueConn = connFactory.createQueueConnection();
// Try to find our designated queue
mQueue = (Queue)ctx.ookup(queueINDIName);
// Make a session for queueing messages: no transactions,
// auto-acknowledge
mSession =
mQueueConn. createQueueSession(false,
. javax.jms.Session.AUTO_ACKNOWLEDGE);
}
catch (JMSException e) {
System.out.printIn("Failed to establish connection/queue:");
e.printStackTrace();
success = false;
}
catch (NamingException ne) {
System.out.printin("INDI Error looking up factory or queue:");
ne.printStackTrace();
success = false;
}

try {
// Make our receiver, for incoming messages.
// Set the message selector to only receive our type of messages,
// in case the same queue is being used for other purposes.
mReceiver = mSession.createReceiver(mQueue,

uJMSType =" 4 MSG_TYPE + nuu);
}

catch (JMSException je) {
System.out.printin("Error establishing message receiver:");
Je.printStackTrace();

}

return success;

// Send a message to the queue
public void sendMessage(String msg) {

try {
// Create a JMS msg sender connected to the destination queue
QueueSender sender = mSession.createSender(mQueue);
// Use the session to create a text message
TextMessage tMsg = mSession.createTextMessage();
tMsg. setIMSType(MSG_TYPE);
// Set the body of the message

338 Chapter 10~ Java Message Service

: Example 10-2: Point-to-Point Messaging Clier.

tMsg.setText(msg);)
// gend the message using the sender

sender.send(tMsg);
System.out.print1n(“Sent the message

} . s
tch (IMSException je) {)
CaSystem.out.print]n("Error sending me

je.printStackTrace();

}
}

// Register a MessagelListener with the (
1y

/ messages asynchrongus -.

gub1ic void registerL1stener(MessageL1s
try {)

i/ Set the Tistener on the rec§1ver
mReceiver.setMessageL1steper(11stg2
// Start the connection, 1n case i
mQueueConn. start();

}) . .
atch (IMSException Jje) { . .
: System.out.print1n("Error registeri

je.printStackTrace();

}
}

rm an synchronous receive of a
ﬁﬁ ?iiiaessage, print the contents.
public String receiveMessage() {".

String msg = "-- No message --;
trileisage m= mReceiver.receive();
if (m instanceof TextMessage) {

msg = ((TextMessage)m).getText()

}
e];ig{= " Unsupported message ty
}

} . s {

catch (JMSException je)

}

return msg;

}

// Print the current contents of the
// so that we don't remove any messag
public void printQueue() {
tr)(/lufeueBrowser browser = mSession.c
Enumeration msgEnum = browser.get
System.out.print]n(“Queue content
while (mngnum.hasMoreE]ements().

e

ent (continued)

IMS connection factory: ");

wider and keep it.
5 not started, so we aren't

leConnection();
}IName);
sages: no transactions,

.se,
rax.jms.Session. AUTO_ACKNOWLEDGE);

y1ish connection/queue:");

;ing up factory or queue:");

messages.
 receive our type of messages,
used for other purposes.

(mQueue,

"JMSType = '" + MSG_TYPE + "'");

ing message receiver:");

d to the destination queue
eSender{mQueue) ;

message

extMessage();

Example 10-2: Point-to-Point Messaging Client (continued)

tMsg.setText(msg);
// Send the message using the sender
sender.send(tMsg);
System.out.printin("Sent the message");

}

catch (JMSException je) {
System.out.printIn("Error sending message " + msg + " to queue");
je.printStackTrace();

}

}

// Register a MessageListener with the queue to receive
// messages asynchronously
public void registerListener{MessagelListener listener) {
try {
// Set. the Tistener on the receiver
mReceiver.setMessagelistener(listener);
// Start the connection, in case it's still stopped
mQueueConn.start();
} :
catch (JIMSException je) {
System.out.printIn("Error registering 1istener: ");
je.printStackTrace();
}
}

// Perform an synchronous receive of a message from the queue. If it's a
// TextMessage, print the contents.
public String receiveMessage() { -
String msg = "-- No message --";
try {
Message m = mReceiver.receive();
if (m instanceof TextMessage) {

msg = ((TextMessage)m).getText();

}
else {
msg = "-- Unsupported message type received --";

) :

}

catch (JMSException je) {

}

" return msg;

}

// Print the current contents of the message queue, using a QueueBrowser
// so that we don't remove any messages from the queue
pubiic void printQueue() {
try { ’
QueueBrowser browser = mSession.createBrowser(mQueue);
Enumeration msgEnum = browser.getEnumeration();
System.out.printin("Queue contents:"); :
while (msgEnum.hasMoreElements()) {

Point-to-Point Messaging 339

‘Exa D, : » ‘
mple 10-2: Poins-to-Point Messaging Client (continued)

System.out.printin("\t"
) p n{"\t" + (Message)mngnum.nextE]ement());

}
catch (IMSException je) {
System.out.prinﬂn("Error browsing queue: "

| + je.getMessage(M;

// When run within a thr
pubTic void run() {
while (true) {
) try { this.wait();
}

ead, just wait for messages to be delivered to ys

} catch (Exception we) {}

// Take command-line ar
// named queue
public static void main(Stri
: trin
if (args.length < 3) { araeth) o
System.out.printin("

" .
guments and se_nd or receive messages from the

Usage: PTPMessagingClient” +
connFactoryName queueName" +

" [s ;
Systgm.exit(l); [endlhstenlrecv_synch] <messageToSend>");

}

// Get the JNDI name
s of the i
// queue, from the command-]iﬁgnnecmon ractory and
Str}ng factoryName = args{0];
String queueName = argsf1]; ,

// Get t € comma d tO Xecute se d ecy ecv_synch
(S
(* ’ v_ Y)

// Cl eate da 'd 't.a "Ze t e lessag”lg pa't Clpallt

new PTPMessagingmient(factoryName, queueName);

// Run the particj in i
F pant in
]/_r/] incoming messages e oum thread
read Tisten = new Thre
Tisten.start(); ad(msger);

» S0 that it can react to

(/ Send a message to the queue
1t (cmd.equals("send")) {
String msg = args[31;
msger. sendMessage(msg) ;
System.exit(0); ’

// Register a listener
else if (cmd.equals("listen")) {

340 Chaprer 10~ java Message Service -

Example 10-2: Point-to-Point Messaging ¢
Messagelistener listener = new Tt
msger.registerListener‘ﬂ1'stener)
System.out.printIn("Client 1istel

+ " Ve ll) ;
System.out.flush(};
try { listen.wait(); } catch (Ex

}

// Synchronously receive a message

else if (cmd.equals("recv_synch"))
String msg = msger.receiveMessag
System.out.printIn(“Received mes
System.exit(0);

else if (cmd.equals("browse”)) {
msger.printQueue();
System.exit(0);

The main() method takes a minimum o
two are the JNDI names of a target J}
order. The third argument is a command

e send sends a message, using the ne
TextMessage.

e recvregisters a listener with the que
e recu_synch synchronously polls the

e browse is a request to print the cur
ing it, using a QueueBrowser.

The main() method creates a PTPMessa¢
constructor passes these to the init()

we've discussed takes place. The clien
and get its InitialContext first. Th
InitialContext constructor, so the envi
ties specified in a jndi.properties file, o1
the JVM. Once the Context is

QueueConnectionFactory and Queue fro
and a QueueSession, so that it can late
Finally, the init() method creates a Q
needed later. The connection hasn't

receiving messages from the JMS provid

Back in the main{) method, once the
run. This is useful for the case where "
listener. Finally, the requested commar
call the client's sendMessage() meth
TextMessage (using the last command-
method). Then the message is sent b

Client (continued)

sage)msgEnum.nextEtement());
1g queue: " + je.getMessage());

it for messages to be delivered to us

tion we) {}

ind or receive messages from the
DIRI
sagingClient" +

ame queueName" +
[recv_synch] <messageToSend>");

tion factory and

, recv, recv_synch)

ing participant
2, queueName);

wead, so that it can react to

Example 10-2: Point-to-Point Messaging Client (continued)

Messagelistener listener = new TextlLogger();
msger.registerListener(1istener);
System.out.printIn("Client 1istening to queue " + gueueName
+ ")
System.out.flush();
try { listen,wait(); } catch (Exception we) {}
'}
// Synchronously receive a message from the queue
else if (cmd.equals("recv_synch")) {
String msg = msger.receiveMessage();
System.out.printin("Received message: " + msg);
System.exit(0);

else if (cmd.equals("browse")) {
msger.printQueue();
System.exit(0);
}
}
}

The main() method takes a minimum of three command-line arguments. The first
two are the JNDI names of a target JMS connection factory and queue, in that
order. The third argument is a command indicating what to do:

e send sends a message, using the next command-line argument as the text of a
TextMessage.

e recuregisters a listener with the queue and waits for messages to come in.
e recu_synch synchronously polls the queue for the next message that’s sent.

e browse is a request to print the current contents of the queue without empty-
ing it, using a QueueBrowser. ’

The main() method creates a PTPMessagingClient using the two JNDI names. The
constructor passes these to the init() method, where all of the JMS initialization
we've discussed takes place. The client attempts to connect to its JNDI provider
and get its InitialContext first. There are no properties provided to the
InitialContext constructor, so the environment would have to have these proper-
ties specified in a jndi.properties file, or on the command line using -D options to
the JVM. Once the Context .is acquired, the client looks up the
QueueConnectionFactory and Queue from JNDI. It also creates a QueueConnection
and a QueueSession, so that it can later create senders and receivers as needed.
Finally, the init() method creates a QueueReceiver from the session, in case it’s
needed later. The connection hasn’t been started yet, so the receiver is not
receiving messages from the JMS provider yet.

Back in the main() method, once the client is created, it's put into a Thread and
run. This is useful for the case where we're going to wait for messages sent to a
listener. Finally, the requested command is checked. If the command is send, we
call the client's sendMessage() method, which creates a QueueSender and a
TextMessage (using the last command-line argument, passed in from the main()
method). Then the message is sent by passing it to the sendQ) method on the

Point-to-Point Messaging 341

m
ethod, where a QueueBrowser is cr

Enumeration of th

€ current messages i

] in the que m : |
conscle, in the order they would be receivedq ue: Bach message is printed to the

Browsing Queues

O B owse r= 1 7 1 e e):
ueue b owse qSESS on.c eateQueueB ows (queu) ,
lee QueueReCe Tver S, QUeUeB owse

S can use nlessage SeleCtorS to hltel W.hat
.

OueueBrgwser filterBrowser =
qSess1on.createQUeueBrowser‘(queue
This QueueBrowser “sees” onl ’
type property set to update.

"transaction-type = 'update'");

Yy messa, in -
ges in the queue that have a transaction-

selector, if it has one:

Enumeration ms =
U gEnum = browser. getE, i
while (mngnum.hasMoreE]ements?)) ?umeratwn();

Me =
ssage msg = (Message)mngnum.nextE]ement()-

Y . - . »
p (] = ID
S stem out rintlr F(Uunc IeSSage l) +]Sg get\Jl S essage ())

The Enumer tion retu would be delivered o)
ation re i
i : ms messages in the order th e

’ T that they woul i
hE. C_ 0f, using th? message selector set on the QueueBrowser So if you had atn
€xisting 0U6ueRece1ver and wanted to. look ahead in the qI..I ¢ e wha

' eue to se
i) be dehv.ered based on the current contents of the queue yout
could create a b_IOWSCI' using the same message selector as the receivi ,
: e1ver; ‘

OueueReceiver recvr = H |

QueueBr owser r ,—
se ecvr
X Br owser
qSess1 on.cr

eate
QueueBrowser(queue, recvr.getMessageSelector()).

Publz'sb-Subscm‘be Mess

Publish-subscribe
messages o 53 pa
the topijc and re

aging
messagin

: g involves o
ticutar o N€ or more MessageProducers “publishing”

! pic, and one or
: Ceiving 3 more MessageConsumers
sible for delivering 4 (i 1y messages published to it. The TMS rs “su
Py of any message sent to a topic t HPYO
o all su

bscribing” to
vider is respon-
bscribers of the

Java Message Service

eal i
ted from our Session, then asked for an -

topic at the time that the message is re

where messages are kept on the queue U
received at a topic while a subscriber is
topic yet, or subscribed and then went ou
to that subscriber.

Publish-subscribe messaging is performec
and classes in the javax.jms package. "
which are looked up in JNDI from the
objects are looked up in JNDI as well
TopicConnections and Topics are used t«
used to create TopicPublishers and Topi

Sample Client

Example 10-3 shows a publish-subsct.
mirrors the PTPMessagingClient in Exas
the client is virtually identical to that des:
that topics, subscribers, and publishers ¢
senders. The only significant differenc
“browse” option, since browsing a top
deliver their messages to any subscribe
wise they are dropped, so browsing a to

Example 10-3: Publish-Subscribe Client

jmport Jjava.util.*;
mport javax.naming.*;
import javax.jms.*;
import java.io.*;

public class PubSubMessagingClient im

// Our connection to the JMS provide
.private TopicConnection mTopicConn :

// The topic used for message-passil
private Topic mfopic = null;

// Our message subscriber - only ne
private TopicSubscriber mSubscriber

// A éing1e session for sending and
private TopicSession mSession = nul

// The message type we tag all our
private static String MSG_TYPE = "¢

// Constructor, with client name, ¢
// connection factory and topic the
public PubSubMessagingClient(String

init(cFactINDIName, topicINDIName

}

given, we create a TextlLogger (see
stener to our QueueReceiver, by calling
1 where the call to the receiver's
a recy_synch command is given, then
hod, where the receive() method on
k until the next message is sent to the
;s a call to the client’s printQueue()
from our session, then asked for an
queue. Each message is printed to the
d.

queues for sending and receiving of
contents of a queue without actually
is done using a QueueBrowser, which is
g its createQueueBrowser() methods:

eQueueBrowser(queue);

use message selectors to filter what

"transaction-type = 'update'");

i the queue that have a transaction-

e, a client asks the browser for an
le that match the browser’s message

aration();

lement();
[D =" + msg.getIMSMessagelD());

rder that they would be delivered to
1 the QueueBrowser. So if you had an
)k ahead in the queue to see what
: current contents of the queue, you
ige selector as the receiver:

‘ecvr.getMessageSelector());

more MessageProducers “publishing”
rre MessageConsumers “subscribing” to
1ed to it. The JMS provider is respon-
:nt to a topic to all subscribers of the

topic at the time that the message is received. Unlike point-to-point messaging,
where messages are kept on the queue until a receiver reads them, any messages
received at a topic while a subscriber is not active (e.g., hasn't subscribed to the
topic yet, or subscribed and then went out of scope or exited) are lost with respect
to that subscriber.

Publish-subscribe messaging is performed in JMS using the topic-related interfaces
and classes in the javax.jms package. Topics are represented by Topic objects,
which are looked up in JNDI from the JMS provider. TopicConnectionFactory
objects are looked up in JNDI as well, and used to create TopicConnections.
TopicConnections and Topics are used to create TopicSessions, which are in turn
used to create TopicPublishers and TopicSubscribers.

Sample Client

Example 10-3 shows a publish-subscribe client, PubSubMessagingClient, that
mirrors the PTPMessagingClient in Example 10-2. The structure and function of
the client is virtually identical to that described for the PTPMessagingClient, except
that topics, subscribers, and publishers are used instead of queues, receivers, and
senders. The only significant difference with this client is it doesn’t have a
“browse” option, since browsing a topic is not possible. As they arrive, topics
deliver their messages to any subscribers currently attached to the topic, other-
wise they are dropped, so browsing a topic’s contents doesn’t make much sense.

Example 10-3: Publish-Subscribe Client

import java.util.*;
tmport javax.naming.*;
import javax.jms.*;
import java.io.*;

pubtic class PubSubMessagingClient implements Runnable {

// Our connection to the JMS provider. Only one is needed for this client.
private TopicConnection mTopicConn = null;

// The topic used for message-passing
private Topic mTopic = null;

// Our message subscriber - only need one.
private TopicSubscriber mSubscriber = null;

// A single session for sending and receiving from all remote peers.
private TopicSession mSession = null;

// The message type we tag all our messages with
private static String MSG_TYPE = "JavaEntMessage";

// Constructor, with client name, and the JNDI location of the JMS

// connection factory and topic that we want to use.

public PubSubMessagingCiient(String cFactINDIName, String topicINDIName) {
init(cFactINDIName, topicJNDIName);

}

Publish-Subscribe Messaging 343

Example 10-3: Publish-Subscribe Client (continued) .
// Do all the JMS-setup for this client. Assumes that the JWM is

// configured (perhaps using Jndi.properties) so that the default JNDI

// InitialContext points to the JMS provider's JNDI service.

protected boolean init(String cFactoryJNDIName, String topicINDIName) {

boolean success = true;
Context ctx = null;

// Attempt to make connection to JNDI service
try {
ctx = new InitialContext();
}
catch (NamingException ne) {
System.out.printin("Failed to connect to JNDI provider:");
ne.printStackTrace();
success = false;
}

// If no INDI context, bail out here
if (ctx = null) {

return success;
}

// Attempt to lookup JMS connection factory from JNDI service
TopicConnectionFactory connFactory = null;
try {

connFactory = (TopicConnectionFactory)ctx.1ookup(cFactoryJNDIName);

System.out.printIn(“Got JMS connection factory.");
} i

catch (NamingException ne2) {

System.out.printIn("Failed to get JMS connection factory: ");
ne2.printStackTrace();

success = false;

})

try {
// Make a connection to the JMS provider and keep it -
/7 At this point, the connection is not started, so we aren't
// receiving any messages.
mTopicConn = connFactory.createTopicConnection();
// Try to find our designated topic
mTopic = (Topic)ctx. Tookup(topicINDIName);
// Make a session for topicing messages
// no transactions, auto-acknowledge
mSession =
mTopicConn.createTopicSession(false,

javax.jms.Session.AUTO_ACKNOWLEDGE);

}
catch (JMSException e) {
System.out.printIn("Failed to establish connection/topic:");

344 Chapter 10~ Java Message Service

Example 10-3: Publish-Subscribe Client

e.printStackTrace();
success = false;

}

i i) {

catch (NamingException ne
System.out.print1n(“JNDI Error 1
ne.printStackTrace();
success = false;

}

try { . '
i/ Make our subscriber, for inc

// Set the message sele;tor to

// in case the same topic 1S be
// Also indicate we don't want

mSubscriber =

jon.createSubscriber(]
oess mlopic

} . -
catch (JMSException je) {
System.out.print]n(“Error estat

je.printStackTrace();
}

return success;
}

a message to the topic.
éﬁbfizdvojd pub]ishMessage(Str1ng
tr‘i/{(lreate a JMS msg.publisher
TopicPublisher publisher = mSe
// Use the session to crgate 3
TextMessage tMsg = mSession.cr
tMsg.setJMSType(MSQ_TYPE);

// Set the body of the message
.setText(msg);

tvsgend the message using the

pub1isher.publish(tMsg);_

System.out.print]n(“Pub]1shed

} . .
catch (JIMSException Jg) {
System.out.print]n('Error sen

je.printStackTrace();
}
}

// Register a MessageLis%ener wit
// messages asynchrongus y (
public void registerListener(Mess

try {
i/ Set the listener on the st

ntinued)

t. Assumes that the JVM is
arties) so that the default JNDI
ovider's JINDI service.

INDIName, String topicJNDIName) {

[service

ict to JINDI provider:");

actory from JNDI service
null;

ry)ctx.lookup(cFactoryJNDIName);

jon factory.");

1S connection factory: ");

rider and keep it
not started, so we aren't

:Connection();
Name);

ges

€,
x.jms.Session.AUTO_ACKNOWLEDGE) ;s

ish connection/topic:");

Example 10-3: Publish-Subscribe Client (continued)

e.printStackTrace();
success = false;
}
catch (NamingException ne) {
System.out.printin("JNDI Error looking up factory or topic:");
ne.printStackTrace();
success = false;

}

try {

// Make our subscriber, for incoming messages

// Set the message selector to only receive our type of messages,

// in case the same topic is being used for other purposes

// Also indicate we don't want any message sent from this connection

mSubscriber =

mSession.createSubscriber(
mTopic, "JIMSType = '" + MSG_TYPE + "'", true);

} .
catch (JMSException je) {

System.out.printIn("Error establishing message subscriber:");

je.printStackTrace();
}

return success;
}

// Send a message to the topic
public void publishMessage(String msg) {
try { :
// Create a JMS msg publisher connected to the destination topic
TopicPublisher publisher = mSession.createPublisher(mTopic);
// Use the session to create a text message
TextMessage tMsg = mSession.createTextMessage();
tMsg.setIMSType(MSG_TYPE);
// Set the body of the message
tMsg.setText(msg);
// Send the message using the publisher
pubiisher.publish(tMsg);
System.out.printIn("Published the message");
}
catch (JMSException je) {
System.out.printin("Error sending message " + msg + " to topic");
je.printStackTrace();
}
}

// Register a MessagelListener with the topic to receive
// messages asynchronously
public void registerListener(MessageListener Tistener) {
try { .
// Set the Tistener on the subscriber

Publish-Subscribe Messaging 345

Example 10-3: Publish

-Subscribe Client (. continued)
mSubscriber. setMessa
// Start the connect
mTopicConn.start();

geLisFener(]istener);
1on, 1in case it's stil] stopped

catch (JMSException Je) {
System.out.printin("Erp

je.printStackTrace(); or registering 1istener; ")

}

// Perform an s :
ynchronous receive
/SbngtMes§age, print the contentsO
p 1; String receiveMessage() { .
String msg = "-- No message --":
try { o
Missagg m = mSubscriber. receive():
i még ln?tanceof TextMessage) { ’
, (TextMessage)m).getText();

f & message from the topic. If it's a

else {
msg =
}
}

;atch (JMSException je) {

-~ Unsupported message type received --"-

return msg;

// When run within
' at
public void run() { e
while (true) {
try { this.wait();

ad, j L
Just wait for messages to be delivered to us

} catch (Exception we) {¥
}

// Take command-line ar
// named topic
puP]1c static void main(Stri
1 (args.length < 3) {
System.out.printin("

guments and send or receive messages from the
ng args[]) {

"Usage: PubSubMessagingCiient" }
connFactoryName topicName" +

System exit(1); [pub]ishlsubscribelrecv_synch] <messageToSend>")

// i
Get our client name, and the JNDI name of the

/ i ‘
/ topic, from the command-1ine Fonnection factory and

String factoryName = args[0];

String topicName = args[1]; |

// Get the command to e

€ Xe i
String o © NS cute (publish, subscribe, recv_synch) |

346 C%qurZO—jhuaﬂﬂmmgevake

.. Example 10-3: Publish-Subscribe Client (co1

// Create and initialize the messagir
pubSubMessagingClient msger = _
new PubSubMessagingC]ient(factoryNe

// Run the participant in its own th
// incoming messages

Thread listen = new Thread(msger);
listen.start(); '

// Send a message to the topic
if (cmd.equals("publish")) {
String msg = args[3);
msger.pub]ishMessage(msg);
System.exit(0);
}
// Register a Tistener
else if (cmd., equals("subscribe)) {
Messagelistener Tistener = new Te:
msger.registerListener(]istener);
System.out.printin("Client Tisten
+ ")
try { Tisten.wait(); } catch (Exc
}
// Synchronously receive a message
else if (cmd.equals("recv_synch"))
String msg = msger. receiveMessage
System.out.println("Received mess
System.exit(0);

Durable Subscriptions

If a client needs to guarantee delivery ¢
time of a single subscriber, it can regi
provider for the target Topic. A durable
createDurableSubscriber() methods o
durable subscriber is created by specifyi

TopicConnection tConn = ...;
tConn.setClientID("client-1");
TopicSession tSession =
tConn.createTopicSession(false,
TopicSubscriber durableSub =
tSession.createDurableSubscribe

This registers a durable subscription tc
Durable subscriptions and their names
client ID of the client that created the
for details on client IDs). Here, we're .
setClientID() on the TopicConnectior

ontinued) . Example 10-3: Publish-Subscribe Client (continued)

stener); // Create and .initialize the messaging participant

it's still stopped : pubSubMessagingClient msger =
new PubSubMessagingClient(factoryName, topicName);

// Run the participant in its own thread, so that it can react to
ring listener: "); // incoming messages
: Thread Tisten = new Thread(msger);
1isten.start();

S // Send a message to the topic
a message from the topic. If it's a if (cmd.equals("publish")) {
: : String msg = args[3];
msger.publishMessage(msg);

System.exit(0);
; } :
i // Register a listener
else if (cmd.equals("subscribe")) {
)i : MessagelListener listener = new Textlogger();

msger.registerListener(listener);
i System.out.printin("Client Tistening to topic " + topicName
ype received --";)

e try { listen.wait(); } catch (Exception we) {}

}
// Synchronously receive a message from the topic

else if (cmd.equals("recv_synch")) {
String msg = msger.receiveMessage();
System,out.printin("Received message: " + msg);
System.exit(0);
: for messages to be delivered to us }

sion we) {}
Durable Subscriptions

If a client needs to guarantee delivery of messages from a Topic beyond the life-
id or receive messages from the : time of a single subscriber, it can register a durable subscription with the JMS
, provider for the target Topic. A durable subscription to a Topic is made using the
{ createDurableSubscriber() methods on a TopicSession. In its simplest form, a

essagingClient” + | durable subscriber is created by specifying a.Topic and a subscriber name:
me topicName" + - . i TopicConnection tConn = ...;

cribelrecv_synch] <messageToSend>"); tConn.setClientID("client-1");
TopicSession tSession =
tConn.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
‘ TopicSubscriber durableSub =
name of the connection factory and tSession.createDurableSubscriber(topic, "subscriber-1");

This registers a durable subscription to the Topic under the name “subscriber-1.”
Durable subscriptions and their names are associated by the JMS provider with the
client ID of the client that created them (see the earlier section “Client identifiers,”
for details on client IDs). Here, we're setting our client ID to “client-1” by calling

sh, subscribe, recv_synch)
setC1ientID() on the TepicConnection.

Publish-Subscribe Messaging 347

As long as this TopicSubscriber is live, it will receive any messages published to
the Topic, as it would if it were a nondurable subscriber. But if the subscriber dies
(goes out of scope, or the client dies), the JMS provider will retain messages on
behalf of the named subscriber (based on its client identifier), until another
durable subscriber attaches to the topic from the same connection using the same
client ID and specifying the same subscriber name. Any pending messages will be
delivered to the new subscriber when it attaches. '

It's important to remember that durable subscriptions can be a costly resource on
the JMS provider. The provider will have to create database records, or otherwise
allocate server resources, in order to preserve the subscription information and any
pending messages for the client. If there are many durable subscriptions, or if the
number of pending messages being held on the server for subscribers becomes
large, this can eventually have a significant impact on the performance of the JMS
provider. So durable subscriptions should be used with discretion.

Transactional Messaging

JMS supports transactional messaging in two ways. In its simplest form, a Session is
created with the transactional option (the first argument to QueueConnection.
createQueueSession() and TopicConnection.createTopicSession()).

QueueSession xactSession =
gConn.createQueueSession(TRUE, Session.AUTO_ACKNOWLEDGE);

When using a transactional Session, the client performs a series of “transactions”
with the Session (sends and/or receives messages from consumers and producers
associated' with the Session). These sends and receives are either committed by
calling the Session's commit() method, or cancelled by calling rollback(). If a
Session is committed, all of the sends and receives are committed to the JMS
provider, which causes the new state of the Destination(s) affected to be
committed. If a Session is rolled back, all changes to the resources on the JMS
provider are rolled back. In either case, the transaction is closed and a new one is
started automatically, for any subsequent messaging actions.

JMS providers can also support transactional messaging through the Java Transac-
tion API (JTA), which allows messaging transactions to be integrated with other
resources, like databases. These JTA-based transactions. are distributed: the under-
lying transactional resources can be distributed across the enterprise. The JMS API
supports this form of transactional messaging with a set of interfaces that provide
access to JTA-aware Connections and Sessions. If a JMS provider supports JTA, it
can export an XAConnectionFactory in its JNDI space. An XAConnectionFactory is
used to create XAConnections, and XAConnections are used to create XASessions.
An XASession is a specialization of Session that overloads the commit() and
rollback() methods to implement them within a JTA context. There are
subclasses of these XA interfaces for point-to-point and publish-subscribe
messaging. For example, to create a JTA-aware TopicSession:

XATopicConnectionfFactory xFactory =
(XATopicConnectionFactory)ctx. Tookup("xact-factory");

XATopicConnection xConn = xFactory.createXATopicConnection();

XATopicSession xSession = xConn.createXATopicSession();

348 Chapter 10— Java Message Service

When 2 client performs 2 series of sendt

actions are performed in the context (:
exists. For example, if we use (?ur X ‘
(xPublisher) and a TopicSubsFr1ber (i
transaction and use it to commit Of roll

javax.transaction.UserTransaction

xaction.start();

try { B '
Message request = ...}
Message responsg = e '
xPub]isher.pubhsh(request)t
response = xSubscriber.rgce1ve
// Made it here, sO commit the
xaction.commit();

} . .

catch (JMSException je) {
// Something bad happened, $0
// by our message sends/receiv

xaction.roliback();
}

Message Selector Syntax

JMS message selectors are used by J
server delivers to 2 given Message
(optionally) when a MessageConsumfel
createReceiver() or the TopicSessic

A message selector is 2 string th'?\t

message the provider wants '.co del}ve
uates to true, the message 15 delive
point-to-point messaging, when mes
the message remains in the queug
message times out, and the ser'ver rz.
messaging, Messages that are filtere

Structure of a Selector

A message selector is made up €
together by logical operators and gr¢

(<expressionl> OR <expression:
(<expressiond> AND NOT <expre:

A message selector is evaluated 1

{on2 is evaluated
example, expression ' '
precedence than OR), and if they ev:

Expressions are made up of‘ 'literz;l
headers or properties), conditional -

rill receive any messages published to
e subscriber. But if the subscriber dies
JMS provider will retain messages on
n its client identifier), until another
1 the same connection using the same
name. Any pending messages will be
‘hes.

scriptions can be a costly resource on
create database records, or otherwise
2 the subscription information and any
many durable subscriptions, or if the
n the server for subscribers becomes
mpact on the performance of the JMS
used with discretion.

ways. In its simplest form, a Session is
first argument to QueueConnection.
.createTopicSession()).

on. AUTO_ACKNOWLEDGE) ;

:nt performs a series of “transactions”
ssages from consumers and producers
ind receives are either committed by
cancelled by calling roliback(). If a
| receives are committed to the JMS

the Destination(s) affected to be
changes to the resources on the JMS
ransaction is closed and a new one is
isaging actions.

messaging through the Java Transac-
asactions to be integrated with other
-ansactions are distributed: the under-
=d across the enterprise. The JMS API
; with a set of interfaces that provide
ms. If a JMS provider supports JTA, it
DI space. An XAConnectionFactory is
tions are used to create XASessions.
i that overloads the commit() and
within a JTA context. There are
oint-to-point and publish-subscribe
e TopicSession:

("xact-factory");
ateXATopicConnection();
XATopicSession();

When a client performs a series of sends/receives with a JTA-aware Session, these
actions are performed in the context of the surrounding UserTransaction, if one
exists. For example, if we use our XATopicSession to create a TopicPublisher
(xPublisher) and a TopicSubscriber (xSubscriber), we can create our own JTA
transaction and use it to commit or roll back a series of message operations:

javax.transaction.UserTransaction xaction = ...;
xaction.start();
try {
Message request = ...;
Message response = ...;
xPublisher.publish(request);
response = xSubscriber.receive();
// Made it here, so commit the topic changes
xaction.commit();
} .
catch (JIMSException je) { :
// Something bad happened, so cancel the topic changes caused
// by our message sends/receives :
xaction.roliback();
}

Message Selector Syntax

JMS message selectors are used by JMS clients to filter the messages that a JMS
server delivers to a given MessageConsumer. A message selector is provided
(optionally) when a MessageConsumer is created, using either the QueueSession.
createReceiver() or the TopicSession.createSubscriber() methods.

A message selector is a string that specifies a predicate to be applied to each
message the provider wants to deliver to a MessageConsumer. If the predicate eval-
uates to true, the message is delivered; if false, the message isn’t delivered. In
point-to-point messaging, when messages are filtered out by a message selector,
the message remains in the queue until the client eventually reads it, or the
message times out, and the server removes it from the queue. In publish-subscribe
messaging, messages that are filtered are never delivered to the subscriber.

Structure of a Selector

A message selector is made up of one or more boolean expressions, joined
together by logical operators and grouped using parentheses. For example:

(<expressionl> OR <expression2> AND <expression3>) OR
(<expressiond> AND NOT <expressiond>) ...

A message selector is evaluated left to right in precedence order. So in this
example, expression2 is evaluated followed by expression3 (since AND has higher
precedence than OR), and if they evaluate to false, expressionl is evaluated, etc.

Expressions are made up of literal values, identifiers .(referting to either message
headers or properties), conditional operators, and arithmetic opérators.

Structure of a Selector 349

Identifiers

An identifier refers to either a standard JMS header field name Oor a custom
message property name. Any JMS header field name can be used as an identifier,
except for JMSDestination, JMSExpiration, JMSRedelivered, and JMSReplyTo,
which can be used as identifiers in a message selector. JMSDestination and

Identifier names are case-sensitive and follow the same general rules as Java
identifiers. They must start with a valid Java identifier start character as deter-
mined by the java.1ang.Character.1‘5JavaIdent1‘f1‘erStart() method. For
‘example, a letter, currency symbol, or connecting punctuation character such as
an underscore _ contain valid Java identifier characters as determined by the
Character.isJavaIdentifierPar‘t() method. You can’t use these reserved words
for identifiers: NULL, TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, IS, or ESCAPE,

The type of an identifier is the type of the header field or property being refer-
enced as its value is set in the message. It's important to remember that the

Literals

String literals are indicated with single quotes. For example:
JMSType = 'updateAck’

If you need to use 2 single quote in a string literal, use two single quotes:
JMSCorrelationID = 'Joe' 's message’

follow the rules for Java integer literals, They are all numerals, with no decimal
' point, and can have a value in the same range as a Java long value:

42, 149, -273

Floating-point literals follow the syntax of Java floating-point literals, They are
humerals with a decimal point:

3.14, 98.6, -273.0

350 Chapter 10— Java Message Service

[

They are also in scientific notation:
31.4e-1, 6.022e23, 2.998e8

r
Literals can also be the boolean values t

Operators

Operators compose identifiers and htterr:
. : o
be logical operators, arithmetic Operators,

Logical Operators
i NOT, AND, and |

logical operators are NJT, :
E:se tkgnla usual boolean logic ser'nantﬁs.
fields or properties whose value is null,

ANDing a nu1l value with a false va

) '
a2 true or null value-evaluates 0 a

ORing a null value with a true val
false or a null value evaluates to a

e Applying NOT to a null value evaluz

Aritbmetic Operators

The arithmetic operators, in preced‘ence(
- (binary). These have the usual anrhm‘
is applied to one or more null values e

Comparison Operators

loost

comparison Operators can be :
’rIaitfge coxll)'lparisons. The basic equaht;; :
are =, >, >=, <, <=, and < >. These 1
values of the same type, else theoe;g:
value is null, the result of the Ncl:J e
operators IS NULL and IS NOTd o

check for the presence of a header

timezone IS NOT NULL AND country
There are also set and range compal
check the range of numeric values:

i 00000 AND 0999
userid BETWEEN 000 ;
currRate NOT BETWEEN 0.0 AND 0.

The IN operator can set memberships «

! k' 'queryAck'
JMSType IN ('msgAck’, :
JMSTyge NOT IN ('msgBroadcast’,

- . -
There is also a string compar}son og :
on string values. A pattern is Us€

MS header field name or a custom
ld name can be used as an identifier,
1, JMSRedelivered, and JMSReplyTo,
essage selector. JMSDestination and
ssage selector operators support only
me at which message selectors are
IS specification, so using the value of
sistent, well-defined result. Using
inexpected results. If, for example, a
true, the first delivery attempt by a
elivered flag should be false, but the
he message and pass the selector,
neffective.

low the same general rules as Java
ra identifier start character as deter-
valdentifierStart() method. For
ecting punctuation character such as
ler characters as determined by the
You can’t use these reserved words
, BETWEEN, LIKE, IN, IS, or ESCAPE.

header field or property being refer-
[t's important to remember that the
ector doesn’t apply type conversion
it's used. If you attempt to refer to a
th a string comparison operator, for
false. If the named header field or
fier evaluates to a null value,

For example:
eral, use two single quotes:

floating-point values. Integer values
y are all numerals, with no decimal
as a Java long value:

ava floating-point literals. They are

They are also in scientific notation:
31.4e-1, 6.022e23, 2.998e8

Literals can also be the boolean values true or false.

Operators

Operators compose identifiers and literals into larger expressions. Operators can
be logical operators, arithmetic operators, or comparison operators.

Logical Operators

The logical operators are NOT, AND, and OR. These are in precedence order. These
have the usual boolean logic semantics. If a logical operator is applied to header
fields or properties whose value is nu11, then the following rules apply:

e ANDing a null value with a false value evaluates to false; ANDing a null with
a true or null value evaluates to a null (or unknown) value. e

e ORing a null value with a true value evaluates to true; ORing a null with a
false or a null value evaluates to a null (or unknown) value.

e Applying NOT to a nul1 value evaluates to a nul1 (or unknown) value.

Aritbmetic Operators

The arithmetic operators, in precedence order, are + and - (unary), * and /, + and
- (binary). These have the usual arithmetic semantics. Any arithmetic operator that
is applied to one or more null values evaluates to a null value.

Comparison Operators

The comparison operators can be loosely grouped into equality comparisons and
range comparisons. The basic equality comparison operators, in precedence order,
are =, >, >=, <, <=, and < >. These binary operators have to be applied to two
values of the same type, else the expression always evaluates to false. If either
value is null, the result of the comparison is null. There are also the equality -
operators IS NULL and IS NOT NULL to compare a value to null. This can also

check for the presence of a header or property:
timezone IS NOT NULL AND country = 'United Kingdom'

There are also set and range comparison operators. The BETWEEN operator can
check the range of numeric values:

userid BETWEEN 00000000 AND 09999999
currRate NOT BETWEEN 0.0 AND 0.9999

The IN operator can set memberships operations on string values:

JMSType IN ('msgAck’, 'quer'yAck', 'updateAck')
JMSType NOT IN ('msgBroadcast', 'synchMessage')

There is also a string comparison operator, LIKE, that allows for wildcard matching
on string values. A pattern is used for the right side of the LIKE operator. The

Operators 351

pattern consists of a valid string
against any single character, an
more characters. For example;

JMSType Tike '%Ack:
tabel not 1ike "Step _'

literal in which the underscore character matches
d the % character matches any sequence of Z€ero or

The _ and % characters can be used j
are escaped by a backslash \:

slogan LIKE '99 44/100\% pure'.

 Expressions

Expressions are simply literals and ide
operators described earlier. A mess
boolean value, so jts combination of

ntifiers assembled together using the various
age selector must eventually evaluate to 2

theses in order to control the order of evaluation,

Arithmetic expressions are
literals and identifier values. Ari

(userid + 10000) / (callerid - 10000)

Conditional expressions are made up of comparison and logical operators used
with numeric, string or boolean literals or identifi

ers, and evaluate to true, false
or null (i.e., unknown). Conditional expressions can also be combined to form
compound conditional expressions: '

(IMSType Tike "ZACk') AND ((userid + 10000) / (callerid - 10000) < 1.0)

Notice that, although the last example includes an arithm
(userid + 10000) / (callerid - 1000)

- it becomes part of a conditional
ator with the numeric litera] 1.0,

etic expression fragment:

null doesn’t match the message,

352 Cbaptgr 10- Java Message Service . '

me——

Jauv

i ide a platforn

avaMail APIs provi .
:ﬁﬁdj Java-based mail and messagxélg
Internet email. JavaMail -car? be use:ma
This includes such apphcau:;ls ﬂasmig]

i lication for JavaMa

P lications. For ez

isting and new applications. ol
ic;'}:llpsalerient a web-based mail readmgO _
tions, receive commands from users, O

Sun Microsystems, Inc. inch.Jded a bz;:
JDK. However, because- this class c ;
with Sun’s implementat_mn of ti‘:xie Ji?lt
advanced electronic mail .capab ;yst !
from scratch. The Javal\f[a'ﬂ API, fir: .
1.2, fills this niche, giving Java ap|
framework. 'l
Frankly speaking, the JavaMail APIC:]
classes provide an inFerface to 9;3 Sg "
storing, and transporting messa%S z.md
ment custom transport pr'otocp e
an add-on, the distribution mlc ues
protocols and a set of helper ¢ assil
the Internet. Also, since Javah:lz;on
Internet Mail Extensions (MIME) on
extremely rich, opening up a rang o

i i Cs 152
* iginally defined in RF
It\‘rdx{-lc\;lfgzazsozg.gme complete set, aloni 2
links, is available at btyp://wuww.nacs.

