
95-702 Distributed Systems
1!Master of Information System

Management

95-702 Distributed Systems

Web Services
Chapter 9 of Coulouris

95-702 Distributed Systems

Web Services
•  One of the dominant paradigms for

programming distributed systems.
•  Enables business to business integration.

(Suppose one organization uses CORBA
and another uses .NET) No problem!

•  Enables service oriented architecture
(SOA).

•  Adopted by the grid computing community.
•  May exist internally to an organization or

externally (in the cloud).

2!Master of Information System
Management

95-702 Distributed Systems

What are Web Services?
•  Web Services began life when Bill Gates

introduced BizTalk in 1999.
•  BizTalk was later renamed .NET.
•  The idea: “to provide the technologies

to allow software in different places,
written in different languages and
resident on different platforms to
connect and interoperate.” From “Programming the
World Wide” by Sebesta

3!Master of Information System
Management

95-702 Distributed Systems

Two Approaches

• SOAP Based (WS-*) Web Services
• REST style web services
• Today’s class:
 - Lecture and one short lab with
 a SOAP web service.
 - Principles of REST

4!Master of Information System
Management

95-702 Distributed Systems

A SOAP Based System In
A Nutshell

5!Master of Information System
Management

From Globus.org
(Grid computing)

95-702 Distributed Systems

With Stubs

6!Master of Information System
Management

From Globus.org
(Grid computing)

You really need to know
what is going on in each
step.

95-702 Distributed Systems
7!Master of Information System

Management

Some Important
Standards

95-702 Distributed Systems
8!Master of Information System

Management

Some Important
Standards

Very important
with respect to
XML web services.

95-702 Distributed Systems
9!Master of Information System

Management

SOAP Style Web Services
•  Provide service interfaces.
•  Communicate using request and reply

messages made of SOAP or some other
XML document.

•  Have an Interface Definition Language
(IDL) called WSDL (Web Service
Definition Language)

•  May be looked up in a web service UDDI
registry (Universal Directory and Discovery Service).

•  Are language independent.
•  May be synchronous or asynchronous.

95-702 Distributed Systems
10!Master of Information System

Management

Web Services

Registry

Client Service

publish lookup

Exchange xml

95-702 Distributed Systems
11!Master of Information System

Management

Web Services Infrastructure and
Components

Security	

Service descriptions (in WSDL)	

Applications	

Directory service	

Web Services	

XML	

Orchestration	

SOAP	

URIs (URLs or URNs)	
 HTTP, SMTP or other transport	

95-702 Distributed Systems
12!Master of Information System

Management

Communication Patterns
•  In general, web services use either a synchronous request-
 reply pattern of communication with their clients or they
 communicate by asynchronous messages.

•  The client does not block on asynchronous calls. Do you
 block when you are expecting an important phone call?
 If not then you are planning on handling the
 call asynchronously.

•  To allow for a variety of patterns, SOAP is based on the packaging
 of single one-way messages.

•  SOAP is used to hold RPC style parameters or entire documents.

•  SOAP may be used over different transports (SMTP, TCP, UDP,
 or HTTP)

95-702 Distributed Systems
13!Master of Information System

Management

Service References
•  URI’s are Uniform Resource Identifiers.
•  URL’s are Uniform Resource Locator URI’s that include
 location information. Thus, resources pointed to by URL’s
 are hard to move.
•  URN’s are Uniform Resource Name URI’s that include no
 location information.
•  A URN lookup service may be used to determine a
 URL from a URN.
•  URL’s are the most frequently used form of URI.

Examples (the third is from Wikipedia):

 1. URL: http://www.cmu.edu/service
 2. URN: urn:ISBN:0-111-2345-6
 3. "you can find urn:ietf:rfc:3187 (URN)
 over at http://tools.ietf.org/html/rfc3187.html (URL)."

95-702 Distributed Systems
14!Master of Information System

Management

Web Service
Composition (Mashups)

hotel booking	

a	

Travel Agent	

flight booking	
 a	

hire car booking	

a	

Service	
Client	

flight booking	

b	

hotel booking	

b	

hire car booking	

b	

What concerns are not shown? This is an important list:
Transactions, Security (privacy, identification, authentication,
authorization), Reliability, Orchestration tooling, Interoperability
through Standards, RPC or Messaging, Service Level agreements

95-702 Distributed Systems
15!Master of Information System

Management

SOAP
•  Defines a scheme for using XML to represent the contents
 of request and reply messages as well as a scheme for
 the communication of XML documents.

•  It is intended that a SOAP message can be passed via
 intermediaries on the way to the computer that manages
 the resources to be accessed.

•  The intermediaries may process the SOAP to provide
 security or transaction support as well as other services.

•  Typically, the SOAP header is processed by intermediaries
 and the SOAP body holds the request or reply.

95-702 Distributed Systems
16!Master of Information System

Management

SOAP Envelope

envelope	

header	

body	

header element	

body element	

header element	

body element	

95-702 Distributed Systems
17!Master of Information System

Management

Request Without Headers

m:exchange	

env:envelope	
 xmlns:env =namespace URI for SOAP envelopes	

m:arg1	

env:body	

xmlns:m = namespace URI of the service description	

Hello	

m:arg2	

World	

Why is envelope in a different namespace than arg1?
Consider GreenBayPackers:MikeMcCarthy and
CMU:MikeMcCarthy	

95-702 Distributed Systems
18!Master of Information System

Management

 Corresponding Reply

env:envelope	
 xmlns:env = namespace URI for SOAP envelope	

m:res1	

env:body	

xmlns:m = namespace URI for the service description	

m:res2	

World	

m:exchangeResponse	

Hello	

95-702 Distributed Systems
19!Master of Information System

Management

HTTP POST Example
endpoint address	

action	

POST /examples/stringer	

Host: www.cdk4.net	

Content-Type: application/soap+xml	

Action: http://www.cdk4.net/examples/stringer#exchange	

<env:envelope xmlns:env= 	
namespace URI for SOAP envelope	
>	

<env:header> </env:header>	

<env:body> </env:body>	

</env:Envelope>	

S
oa

p
m

es
sa

ge
	

H
TT

P
he

ad
er
	

A transport protocol is required to send a SOAP document to its
destination.

Other transports may be used. WS-Addressing may be used to
include destination and source. Thus, different protocols might
be used over different parts of the route of a message.

95-702 Distributed Systems
20!Master of Information System

Management

REST Style WS
Use a URI and an HTTP method
to select what needs to be done.	

POST /examples/stringer	

Host: www.cdk4.net	

Drop the SOAP and use name value pairs in the request.	

Use XML or JSON for the response. Don’t provide a new	

set of operations - use HTTP methods instead. Use the same 	

set of principles that made the web go viral!	

95-702 Distributed Systems
21!Master of Information System

Management

WS-Addressing
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <S:Header>
 <wsa:MessageID>
 uuid:6B29FC40-CA47-1067-B31D-00DD010662DA
 </wsa:MessageID>
 <wsa:ReplyTo>
 <wsa:Address>http://business456.example/client1</wsa:Address>
 </wsa:ReplyTo>
 <wsa:To>http://fabrikam123.example/Purchasing</wsa:To>
 <wsa:Action>http://fabrikam123.example/SubmitPO</wsa:Action>
 </S:Header>
 <S:Body>
 ...
 </S:Body>
 </S:Envelope>

Address information included within
the document rather than only
being specified by the transport.
What does this buy us?

95-702 Distributed Systems
22!Master of Information System

Management

Distributed Objects?
At first glance, the interaction between client and server seems
like RMI. We will look at RMI soon. RMI short course : OOP on more than
one machine.

But, RMI permits the creation of remote objects. These may then
be accessed via remote references.

Web services may create and use objects but never return a
remote reference to a remote object. A web service is a single
set of procedures.

Web services are simpler than distributed objects. Simple is good.

95-702 Distributed Systems
23!Master of Information System

Management

Service Descriptions
•  The primary means of describing a web service is by using
 WSDL (the Web Services Description Language).

•  XML Schema may be used to describe the input and output
 parameters.

•  WSDL describes the operations and makes use of XML Schema
 to describe an exchange of messages.

•  A Service Description (WSDL document) is an IDL (interface
 definition language) plus it contains
 information on how and where the service may be accessed.

•  It contains an abstract part and a concrete part. The abstract
 part is most like a traditional interface. The concrete part tells
 us how and where to access the service.

95-702 Distributed Systems
24!Master of Information System

Management

The Main Elements in a
WSDL Description

abstract	
 concrete	

how	
 where	

definitions	

types	

target namespace	

interface	
 bindings	
 services	
message	

document style	
 request-reply style	

A binding is a choice of protocols.
A service holds an endpoint address.
Client or server side code may be generated automatically from the
WSDL.
A WSDL document may be accessed directly or indirectly through a
registry like UDDI (Universal Directory and Discovery Service).

95-702 Distributed Systems
25!Master of Information System

Management

WSDL

• A message exchange is called an
operation.

• Related operations are grouped
into interfaces.

• A binding specifies concrete details
about what goes on the wire.

• WSDL is an Interface Definition
Language (IDL).

95-702 Distributed Systems
26!Master of Information System

Management

WSDL
•  Describes the contract between

applications.
•  Can be automatically generated from a

collection of Java or C# classes.
•  Can be read by utilities that generate

client side proxy code or server side
 skeletons.
•  See wsimport (JDK 6.0) or wsdl.exe on

the Microsoft side. In Netbeans just
drag and drop a web reference.

95-702 Distributed Systems

Lab Activity One

• Write a SOAP based web service
that computes the sum of two
integers.

• Write a web service client that
asks a user for two integers and
makes use of the service to
compute the sum.

27!Master of Information System
Management

95-702 Distributed Systems

Lab Activity (1)

(1) New Project/Java Web/Web Application/Name it
 ArithmeticServiceProject/Next/Finish
(2) Right Click Project/New Web Service
 Name: ArithmeticService
 Package: edu.cmu.andrew.YOURID
 Select: Create web service from scratch/Finish
(3) Use design mode to create a new operation called
 add that takes two integer arguments, adds them and
 returns an integer result.
(4) Use source mode to complete the code in the add
 method.

28!Master of Information System
Management

95-702 Distributed Systems

Lab Activity (2)
(5) Right click the project. Save, build and deploy the web

service.
(6) Expand the Web Service node. Right click

ArithmeticService and select Test Web Service.
(7) Use the browser to visit the service and view the SOAP

request and response.
(8) View the WSDL. Copy the WSDL URL. We will need it

to generate the client side proxy.
(9) Build a new project. This project will hold the web

service client.
(10) New Project/Java Application/Name it
 WSClientProject.
(11) Right Click Project and select New Web Service Client.
(12) Select WSDL URL and paste the WSDL’s URL.

29!Master of Information System
Management

95-702 Distributed Systems

Lab Activity (3)
(13) There should now be a web service reference node
 under your client project. Expand it down to the add
 method. Drag the add method into your client.
(14) Complete your client side code:

 public static void main(String[] args) {
 System.out.println("Enter two ints to be added separated by a newline");
 Scanner sc=new Scanner(System.in);
 String x =sc.nextLine();
 String y = sc.nextLine();
 int a = Integer.parseInt(x);
 int b = Integer.parseInt(y);
 System.out.println(a + "+" + b);
 int c = add(a,b); // this add method was generated from
 // the WSDL
 System.out.print(c);
 }

30!Master of Information System
Management

95-702 Distributed Systems

Lab Activity (4)
(15) Right click the client project. Select clean and build
 and then run.
(16) Enter an int and hit return. Enter a second int and hit
 return.
Quiz questions:
 a) How many SOAP messages were transferred on
 the wire?
 b) What use was the WSDL?
 c) Is this an interoperable solution?
 d) Is this secure from Even and Mallory?
 e) Is this synchronous or asynchronous?
 f) Would this service handle concurrent
 visitors?

31!Master of Information System
Management

95-702 Distributed Systems

A Look At REST
•  So far we have:

 (1) Created a SOAP based web service.
 (2) Tested it and retrieved its WSDL.
 (3) Generated code based on the WSDL.
 (4) Called that code from a client.

§  Let’s look at the REST design philosophy…

32!Master of Information System
Management

95-702 Distributed Systems

REST

• REpresentational State Transfer
• Roy Fielding’s doctoral dissertation

(2000)
• Fielding (along with Tim Berners-

Lee) designed HTTP and URI’s.
• The question he tried to answer in

his thesis was “Why is the web so
viral”? What is its architecture?
What are its principles?

Master of Information System
Management

33!

Notes from “RESTFul
Java with JAX-RS” by
Bill Burke.

95-702 Distributed Systems

REST Architectural
Principles

•  The web has addressable resources.
 Each resource has a URI.
•  The web has a uniform and constrained interface.
 HTTP, for example, has a small number of
 methods. Use these to manipulate
 resourses.
•  The web is representation oriented – providing

diverse formats.
•  The web may be used to communicate statelessly

– providing scalability
•  Hypermedia is used as the engine of application

state.

Master of Information System
Management

34!

95-702 Distributed Systems

Understanding REST
•  REST is not protocol specific. It is usually

associated with HTTP but its principles are more
general.

•  SOAP and WS-* use HTTP strictly as a transport
protocol.

•  But HTTP may be used as a rich application
protocol.

•  Browsers usually use only a small part of HTTP.
•  HTTP is a synchronous request/response network

protocol used for distributed, collaborative,
document based systems.

•  Various message formats may be used – XML,
JSON,..

•  Binary data may be included in the message body.

Master of Information System
Management

35!

95-702 Distributed Systems

Principle: Addressability
•  Addressability (not restricted to HTTP)
 Each HTTP request uses a URI.
 The format of a URI is well defined:

 scheme://host:port/path?queryString#fragment

 The scheme need not be HTTP. May be FTP or HTTPS.
 The host field may be a DNS name or a IP address.
 The port may be derived from the scheme. Using HTTP implies port 80.
 The path is a set of text segments delimited by the “/”.
 The queryString is a list of parameters represented as
 name=value pairs. Each pair is delimited by an “&”.
 The fragment is used to point to a particular place in a document.

 A space is represented with the ‘+’ characters. Other characters use %
 followed by two hex digits.

Master of Information System
Management

36!

95-702 Distributed Systems

Principle: Uniform
Interface (1)

•  A uniform constrained interface:

 - No action parameter in the URI

 - HTTP
 GET - read only operation
 - idempotent (once same as many)
 - safe (no important change to server’s
 state)
 - may include parameters in the URI
 http://www.example.com/products?
 pid=123

Master of Information System
Management

37!

95-702 Distributed Systems

Principle: Uniform
Interface (2)

 HTTP
 PUT - store the message body
 - insert or update
 - idempotent
 - not safe

Master of Information System
Management

38!

95-702 Distributed Systems

Principle: Uniform
Interface (3)

 HTTP
 POST - Not idempotent
 - Not safe
 - Each method call may modify the
 resource in a unique way
 - The request may or may not contain
 additional information
 - The response may or may not contain
 additional information
 - The parameters are found within the
 request body (not within the URI)

Master of Information System
Management

39!

95-702 Distributed Systems

Principle: Uniform
Interface (4)

 HTTP
 DELETE - remove the resource
 - idempotent
 - Not safe
 - Each method call may modify the
 resource in a unique way
 - The request may or may not contain
 additional information
 - The response may or may not contain
 additional information

 HTTP HEAD, OPTIONS, TRACE and CONNECT are less
 important.

Master of Information System
Management

40!

95-702 Distributed Systems

Principle: Uniform
Interface (5)

Does HTTP have too few operations?

Note that SQL has only four operations:
SELECT, INSERT, UPDATE and DELETE

JMS and MOM have, essentially, two
operations: SEND and RECEIVE

SQL and JMS have been very useful.

Master of Information System
Management

41!

95-702 Distributed Systems

What does a uniform interface
buy?

Familiarity
 We do not need a general IDL that describes a
 variety of method signatures.
 We already know the methods.
Interoperability
 WS-* has been a moving target.
 HTTP is widely supported.
Scalability
 Since GET is idempotent and safe, results may be
 cached by clients or proxy servers.
 Since PUT and DELETE are both idempotent neither
 the client or the server need worry about handling
 duplicate message delivery.

Master of Information System
Management

42!

95-702 Distributed Systems

Principle: Representation
Oriented(1)

• Representations of resources are
exchanged.

• GET returns a representation.
• PUT and POST passes

representations to the server so
that underlying resources may
change.

• Representations may be in many
formats: XML, JSON, YAML, etc., …

Master of Information System
Management

43!

95-702 Distributed Systems

Principle: Representation
Oriented(2)

•  HTTP uses the CONTENT-TYPE header to
specify the message format the server is
sending.

•  The value of the CONTENT-TYPE is a
MIME typed string. Versioning
information may be included.

•  Examples:
 text/plain
 text/html
 application/vnd+xml;version=1.1
•  “vnd” implies a vendor specific MIME

type

Master of Information System
Management

44!

95-702 Distributed Systems

Principle: Representation
Oriented(3)

• The ACCEPT header in content
negotiation.

• An AJAX request might include a
request for JSON.

• A Java request might include a
request for XML.

• Ruby might ask for YAML.

Master of Information System
Management

45!

95-702 Distributed Systems

Principle: Communicate
Statelessly

•  The application may have state but
there is no client session data stored
on the server.

•  If there is any session-specific data it
should be held and maintained by
the client and transferred to the
server with each request as needed.

•  The server is easier to scale. No
replication of session data concerns.

Master of Information System
Management

46!

95-702 Distributed Systems

Principle: HATEOAS
•  Hypermedia as the Engine of Application

State
•  Hypermedia is document centric but with the

additional feature of links.
•  With each request returned from a server it tells

you what interactions you can do next as well as
where you can go to transition the state of your
application.

•  Example:
 <order id = “111”>
 <customer>http://…/customers/3214
 <order-entries>
 <order-entry>
 <qty>5
 <product>http://…/products/111

Master of Information System
Management

47!

95-702 Distributed Systems

Principle: HATEOS

• From Wikipedia:
•  A REST client enters a REST application through a

simple fixedURL. All future actions the client may take
are discovered within resource representations returned
from the server. The media types used for these
representations, and the link relations they may
contain, are standardized. The client transitions through
application states by selecting from the links within a
representation or by manipulating the representation in
other ways afforded by its media type. In this way,
RESTful interaction is driven by hypermedia, rather than
out-of-band information.[1]

48!Master of Information System
Management

95-702 Distributed Systems

Principle: HATEOS

• Knock Knock Joke Example
• Netbeans RESTKnocker

49!Master of Information System
Management

95-702 Distributed Systems

Bing Maps Using REST

• Visit the URL (using my key):
http://dev.virtualearth.net/REST/v1/Locations/New%20York?
output=xml&key=AqMWEeRufD1Ch2uhYsyD10OPbLGMs_GATcB8Xd8trcvybpNuDRcMo6U6uVCqOa
ra

•  How does your browser react?
•  Why?
•  Change XML to JSON.
•  How does your browser react?
•  Why?

50!Master of Information System
Management

95-702 Distributed Systems

WeatherBug API

• Here is a nice description of the
weather bug REST style API:

•  http://developer.weatherbug.com/docs/read/
WeatherBug_API_JSON

•  WeatherBug also provides a SOAP based service.

51!Master of Information System
Management

