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Another Example: A 
Distributed Whiteboard 

•  Suppose a whiteboard server is willing 
to make calls to all registered clients 
when the drawing is changed by any 
one client. 

•  Clients may subscribe to this service 
(register interest). 

•  The whiteboard server publishes the 
events that it will make available to 
clients. 

•  This is a publish-subscribe pattern. 
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Two Characteristics of 
Distributed Event Based 

Systems 
(1)  Heterogeneous 
        -- event generators publish the types of    
           events they offer 
        -- other objects subscribe and provide  
            callable methods 
        -- components that were not designed  
            to work together may interoperate 
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Two Characteristics of 
Distributed Event Based 

Systems 
(2)   Asynchronous 
        -- Publishers and subscribers are  
            decoupled in space. 
        -- notifications of events are sent    
            asynchronously to all  
            subscribers. 
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Goals/Principles Of Java 
RMI 

• Distributed Java  
• Almost the same syntax and 

semantics used by non-distributed 
applications 

• Allow code that defines behavior 
and code that implements behavior 
to remain separate and to run on 
separate JVMs  

• The transport layer is TCP/IP 
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Goals/Principles Of Java 
RMI 

•  On top of TCP/IP, RMI originally used a 
protocol called Java Remote Method Protocol 
(JRMP). JRMP is proprietary. 

•  For increased interoperability RMI now uses 
the Internet Inter-ORB Protocol (IIOP). This 
protocol is language neutral and runs on TCP/
IP providing a standard way to make method 
calls to remote objects. 
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Interface Definition Language 
 • Definition: An interface definition 

language (IDL) provides a notation 
for defining interfaces in which each 
of the parameters of a method may 
be described as for input or output in 
addition to having its type specified. 

• These may be used to allow objects 
written in different languages to 
invoke one another. 

•  In Java RMI, we use a Java interface. 
95-702 Distributed Systems 
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Traditional Object Model 

•  Each object is a set of data and a set of methods.  
•  Object references are assigned to variables. 
•  Interfaces define an object’s methods. 
•  Actions are initiated by invoking methods. 
•  Exceptions may be thrown for unexpected or illegal  
  conditions. 
•  Garbage collection may be handled by the developer  
  (C++) or by the runtime (.NET and Java).  
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Distributed Object Model 
•  Having client and server objects in different processes  
  enforces encapsulation. You must call a method to  
  change its state. 
•  Methods may be synchronized to protect against  
  conflicting access by multiple clients. 
•  Objects are accessed remotely through RMI or 
  objects are copied to the local machine (if the object’s 
  class is available locally) and used locally. 
•  Remote object references are analogous to local ones  
  in that: 
    1. The invoker uses the remote object reference to  
    identify the object and 
    2. The remote object reference may be passed as an  
    argument to or return value from a local or remote  
    method.  
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RMI Design Issues 
 
•  Level of Transparency 
         
        Remote calls should have a syntax 
        that is close to local calls. 
         
        But it should probably be clear to the  
        programmer that a remote call is being 
        made. 
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Generic RMI Modules 
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A Generic Remote Reference Module 
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The remote reference module holds a table that records the correspondence 
between local object references in that process and remote object references 
(which are system wide). 
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A Generic Communication 
Module  
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Coordinate to provide a specified invocation semantics. The communication  
module selects the dispatcher for the class of the object to be invoked,  
passing on the remote object’s local reference. 
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Proxies 
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The proxy makes the RMI transparent to the caller. It marshals and unmarshals 
parameters. There is one proxy for each remote object. Proxies hold the remote 
object reference. 
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Generic Dispatchers and Skeletons (1) 
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The server has one dispatcher and skeleton for each class representing a  
remote object.  A request message with a methodID is passed from the  
communication module. The dispatcher calls the method in the skeleton  
passing the request message. The skeleton implements the remote object’s  
interface in much the same way that a proxy does. The remote reference  
module may be asked for the local location associated with the remote reference.  
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Generic Dispatchers and Skeletons (2) 
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The communication module selects the dispatcher based upon the remote object 
reference. The dispatcher selects the method to call in the skeleton. The skeleton 
unmarshalls parameters and calls the method in the remote object. 



22!95-702 Distributed Systems 

Binders 
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Java uses the 
rmiregistry 

CORBA uses the  
CORBA Naming Service 

Binders allow an object to be named and registered. 
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Java RMI 
•  A naming or directory service is run on 

a well-known host and port number.  
•  Usually a DNS name is used instead of 

an IP address.  
•  RMI itself includes a simple service 

called the RMI Registry. The RMI 
Registry runs on each machine that 
hosts remote service objects and 
accepts queries for services, by default 
on port 1099.  
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Java RMI 
•  On the client side, the RMI Registry is 

accessed through the static class 
Naming. It provides the method 
lookup() that a client uses to query a 
registry.  

•  The registry is not the only source of 
remote object references. A remote 
method may return a remote reference. 

•  The registry returns references when 
given a registered name. It may also  

   return stubs to the client. You don’t see 
the stubs in recent editions of Java. 
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Client 
Virtual Machine 
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Virtual Machine 

method calls with 
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The roles of client and server only apply to a single method call. 
It is entirely possible for the roles to be reversed. 

Java RMI 
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The registry is only used on start up. 
The server names the remote object 
and each type of client does a single 
lookup. 
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The ReaderClient calls the  
register method on the server 
side remote object. It passes 
a remote object reference.  
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The Proxy Design Pattern 
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Simple Java RMI Example 
1 - A Client  

import java.rmi.*; 
 
public class ProductClient { 
 
  public static void main(String args[]) { 
 
        System.setSecurityManager( new RMISecurityManager()); 
 
        String url = "rmi://localhost/"; 
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try {         // get remote references 
                Product c1 = (Product)Naming.lookup(url + "toaster"); 
                Product c2 = (Product)Naming.lookup(url + "microwave"); 
                // make calls on local stubs 
                // get two String objects from server 
                System.out.println(c1.getDescription()); 
                System.out.println(c2.getDescription()); 
       } 
        catch( Exception e) { 
 
            System.out.println("Error " + e); 
 
        } 
        System.exit(0); 
   } 
} 
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Notes about the client(1) 

•  The default behavior when running a Java application is that 
   no security manager is installed. A Java application can read 
   and write files, open sockets, start print jobs and so on. 
 
•   Applets, on the other hand, immediately install a security 
   manager that is quite restrictive. 
 
•   A security manager may be installed with a call to the static 
   setSecurityManager method in the System class. 
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Notes about the client(2) 
•  Any time you load code from another source (as this client 
  might be doing by dynamically downloading the stub  
  class), you need a security manager. 
 
•  By default, the RMISecurityManager restricts all code in the 
  program from establishing network connections. But, this  
  program needs network connections. 
 
        -- to reach the RMI registry 
        -- to contact the server objects 
 
•  So, Java requires that we inform the security manager 
  through a policy file. 
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Notes about the client(3) 
•      The Naming class provides methods for storing and      
         obtaining references to remote objects in the remote      
         object registry.  
•       Callers on a remote (or local) host can lookup the    
         remote object by name, obtain its reference, and then     
         invoke remote methods on the 
         object. 
•       lookup is a static method of the Naming class that    
         returns a reference to an object that implements the 
         remote interface. Its single parameter contains a URL 
         and the name of the object. 
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Notes about the client(4) 
The object references c1 and c2 do not actually refer to objects on the 
server. Instead, these references refer to a stub class that must exist 
on the client.  
 
Product c1 = (Product)Naming.lookup(url + "toaster"); 
Product c2 = (Product)Naming.lookup(url + "microwave"); 
 
The stub class is in charge of object serialization and transmission. 
it’s the stub object that actually gets called by the client with the 
line  
 
System.out.println(c1.getDescription()); 



35!95-702 Distributed Systems 

File client.policy 

grant   
{    permission java.net.SocketPermission 
                "*:1024-65535", "connect"; 
}; 

This policy file allows an application to make any network 
connection to a port with port number at least 1024. (The RMI 
port is 1099 by default, and the server objects also use ports 
>= 1024.)   
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Notes About the client(5) 

When running the client, we must set a system property 
that describes where we have stored the policy. 
 

 javac ProductClient.java  
 java –Djava.security.policy=client.policy ProductClient 
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Files on the Server  
Product.java 

// Product.java 
 
import java.rmi.*; 
 
public interface Product extends Remote { 
 
       String getDescription() throws RemoteException; 
 
} 
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Notes on Product Interface 
•  This interface must reside on both the client 
   and the server. RMI is not about compilation 

against remote objects. 
•  All interfaces for remote objects must extend 

remote. 
•  Each method requires the caller to handle a 

RemoteException (if any network problems 
occur). 
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Files on the Server 
ProductImpl.java 

// ProductImpl.java 
import java.rmi.*; 
import java.rmi.server.*; 
 
public class ProductImpl extends UnicastRemoteObject 
                                         implements Product { 
       private String name; 
 
       public ProductImpl(String n) throws RemoteException { 
              name = n; 
       } 
       public String getDescription() throws RemoteException { 
              return "I am a " + name + ". Buy me!"; 
       } 
} 
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Notes on ProductImpl.java 
•  This file resides on the server.  

•  It is used to automatically generate the stub class that is required 
  by the client. In order to create such a stub class we can use the  
  rmic program on the server: 
 
                  javac ProductImpl.java 
                  rmic –v1.2 ProductImpl 
 
•  This creates the file ProductImpl_Stub.class ( skeleton classes 
  are no longer needed in JDK1.2 ) 
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Files on the server  
ProductServer.java 

// ProductServer.java 
import java.rmi.*; 
import java.rmi.server.*; 
 
public class ProductServer { 
 
    public static void main(String args[]) { 
 
        try { 
               System.out.println("Constructing server implementations...");  
               ProductImpl p1 = new ProductImpl("Blackwell Toaster"); 
               ProductImpl p2 = new ProductImpl("ZapXpress Microwave"); 
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System.out.println("Binding server implementations to registry..."); 
 
Naming.rebind("toaster", p1); 
 
Naming.rebind("microwave",p2); 
 
System.out.println("Waiting for invocations from clients..."); 
 
} 
            catch(Exception e) { 
 
               System.out.println("Error: " + e); 
            } 
     } 
} 
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Notes on the 
ProductServer.java 

•  The server program registers objects with the bootstrap 
  registry service, and the client retrieves stubs to those objects. 
 
•  You register a server object by giving the bootstrap registry 
   service a reference to the object and a unique name. 
 
         ProductImpl p1 = new ProductImpl(“Blackwell Toaster”); 
         Naming.rebind("toaster", p1); 
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Summary of Activities 

1.  Compile the java files: 
            javac *.java 
2.  Run rmic on the ProductImpl.class producing the file 
      ProductImpl_Stub.class 

  rmic –v1.2 ProductImpl 
3.  Start the RMI registry 

  start rmiregistry 
4.  Start the server 
            start java ProductServer  
5.  Run the client 
            java –Djava.security.policy=client.policy ProductClient 



45!95-702 Distributed Systems 

Parameter Passing in 
Remote Methods 

When a remote object is passed from the server, the 
client receives a stub (or already has one locally): 
 
         Product c1 = (Product)Naming.lookup(url + "toaster"); 
 
Using the stub, it can manipulate the server object by  
invoking remote methods. The object, however, remains 
on the server.  
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Parameter Passing in 
Remote Methods 

It is also possible to pass and return any objects via a  
remote method call, not just those that implement the 
remote interface. 
 
The method call  
 

  c1.getDescription() 
 
returned a full blown String object to the client. This then 
became the client’s String object. It has been copied via  
java serialization. 
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Parameter Passing in 
Remote Methods 

This differs from local method calls where we pass and 
return references to objects. 
 
To summarize, remote objects are passed across the network 
as stubs (remote references). Nonremote objects are copied.  
 
Whenever code calls a remote method, the stub makes a  
package that contains copies of all parameter values and  
sends it to the server, using the object serialization mechanism 
to marshall the parameters. 
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Java RMI Example 2 - RMI 
Whiteboard  

•  See Coulouris Text 
•  Client and Server code stored in 

separate directories 
•  Stub code available to client and 

server (in their classpaths) and so no 
need for RMISecurity Manager 

•  All classes and interfaces available to 
both sides 
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Client Directory 
GraphicalObject.class 
GraphicalObject.java           
Shape.class 
Shape.java 
ShapeList.class 
ShapeList.java 
ShapeListClient.class 
ShapeListClient.java         
ShapeListServant_Stub.class 
ShapeServant_Stub.class 

 
Client side steps 
The stub classes were 
created on the server side  
and copied to the client 
javac *.java 
java ShapeListClient 
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Server Directory 
GraphicalObject.class 
GraphicalObject.java           
Shape.class                    
Shape.java 
ShapeList.class                
ShapeList.java                 
ShapeListServant.class 
ShapeListServant.java          
ShapeListServant_ 
Stub.class    
ShapeListServer.class 
ShapeListServer.java           
ShapeServant.class             
ShapeServant.java 
ShapeServant_Stub.class 

 
Server side steps 
javac *.java 
rmic –V1.2 ShapeServant 
rmic –V1.2 ShapeListServant 
copy stubs to client 
start rmiregistry 
java ShapeListServer 
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GraphicalObject.java 
// GraphicalObject.java                      
// Holds information on a Graphical shape 
 
import java.awt.Rectangle; 
import java.awt.Color; 
import java.io.Serializable; 
 
public class GraphicalObject implements Serializable{ 
 
    public String type; 
    public Rectangle enclosing; 
    public Color line; 
    public Color fill; 
    public boolean isFilled; 
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//  constructors 
    public GraphicalObject() { } 
     
    public GraphicalObject(String aType, Rectangle anEnclosing, 

Color aLine,Color aFill, boolean anIsFilled) { 
  type = aType; 
  enclosing = anEnclosing; 
  line = aLine; 
  fill = aFill; 
  isFilled = anIsFilled; 

    } 
     
    public void print(){ 

  System.out.print(type); 
  System.out.print(enclosing.x + " , " + enclosing.y + " , " 
+ enclosing.width + " , "  + enclosing.height); 
  if(isFilled) System.out.println("- filled");else 
System.out.println("not filled"); 
 } 

} 
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Shape.java 
// Shape.java                          
// Interface for a Shape 
 
import java.rmi.*; 
import java.util.Vector; 
 
public interface Shape extends Remote { 
 
   int getVersion() throws RemoteException; 
 
   GraphicalObject getAllState() throws RemoteException; 
 
} 
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ShapeServant.java 
// ShapeServant.java   
// Remote object that wraps a Shape 
 
import java.rmi.*; 
import java.rmi.server.UnicastRemoteObject; 
 
public class ShapeServant extends UnicastRemoteObject implements 

Shape { 
 
    int myVersion; 
    GraphicalObject theG; 
      
    public ShapeServant(GraphicalObject g, int version)throws 

RemoteException{ 
     theG = g; 
  myVersion = version; 
    } 
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public int getVersion() throws RemoteException { 
     return myVersion; 

    } 
  

    public GraphicalObject  getAllState() throws RemoteException{ 
        return theG; 
   } 
} 
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// ShapeList.java                        
// Interface for a list of Shapes 
 
import java.rmi.*; 
import java.util.Vector; 
 
public interface ShapeList extends Remote { 
    
        Shape newShape(GraphicalObject g) throws RemoteException; 
        Vector allShapes()throws RemoteException; 
        int getVersion() throws RemoteException; 
} 
 

ShapeList.java 
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ShapeListServant.java 

// ShapeList.java   
// Remote Object that implements ShapeList 
 
import java.rmi.*; 
import java.rmi.server.UnicastRemoteObject; 
import java.util.Vector; 
 
public class ShapeListServant extends UnicastRemoteObject  
                    implements ShapeList{ 
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    private Vector theList; 
    private int version; 
     
    public ShapeListServant()throws RemoteException{ 
        theList = new Vector(); 
        version = 0; 
    } 
 
  public Shape newShape(GraphicalObject g) throws  
                        RemoteException{ 
        version++; 
        Shape s = new ShapeServant( g, version); 
        theList.addElement(s);                 
        return s; 
     } 
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     public  Vector allShapes() throws RemoteException{ 
            return theList; 
     } 
 
     public int getVersion() throws RemoteException{ 
        return version; 
     }  
} 
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ShapeListServer.java 
// ShapeListServer.java                          
// Server to install remote objects 
 
// Assume all stubs available to client and server  
// so no need to create a 
// RMISecurityManager with java.security.policy 
  
import java.rmi.*; 
 
public class ShapeListServer { 
 

 public static void main(String args[]){ 
      
          System.out.println("Main OK");           
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try{ 
            ShapeList aShapelist = new ShapeListServant(); 
         
            System.out.println("Created shape list object"); 
            System.out.println("Placing in registry"); 
 
            Naming.rebind("ShapeList", aShapelist);  
         
            System.out.println("ShapeList server ready"); 
     
           }catch(Exception e) { 
                 System.out.println("ShapeList server main " +  
                                             e.getMessage()); 
        } 
    } 
} 
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ShapeListClient.java 

// ShapeListClient.java                  
// Client - Gets a list of remote shapes or adds a shape  
// to the remote list 
 
import java.rmi.*; 
import java.rmi.server.*; 
import java.util.Vector; 
import java.awt.Rectangle; 
import java.awt.Color; 
 
 
public class ShapeListClient{ 
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public static void main(String args[]){ 
 
    String option = "Read"; 

 String shapeType = "Rectangle"; 
     
            // read or write 

 if(args.length > 0)  option = args[0];   
 
            // specify Circle, Line etc 
            if(args.length > 1)  shapeType = args[1];   
            
            System.out.println("option = " + option +  
                                                "shape = " + shapeType); 
            ShapeList aShapeList = null; 
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try{ 
           aShapeList  = (ShapeList) 
                                    Naming.lookup("//localhost/ShapeList"); 
            
           System.out.println("Found server"); 
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Vector sList = aShapeList.allShapes(); 
 System.out.println("Got vector"); 
 if(option.equals("Read")){ 

 for(int i=0; i<sList.size(); i++){ 
              GraphicalObject g =  
                                      ((Shape)sList.elementAt(i)).getAllState(); 
              g.print(); 
         } 
  }  
  else {  // write to server 
           GraphicalObject g = new  
                          GraphicalObject( 
                                    shapeType, new Rectangle(50,50,300,400), 
                                            Color.red,Color.blue, false); 
                   System.out.println("Created graphical object"); 
              aShapeList.newShape(g); 
                   System.out.println("Stored shape"); 
         } 
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}catch(RemoteException e) { 
 
               System.out.println("allShapes: " + e.getMessage()); 
 

    }catch(Exception e) { 
 
               System.out.println("Lookup: " + e.getMessage());} 
    } 
} 
 
 
 


