
1!95-702 Distributed Systems

95-702 Distributed Systems

An Introduction to Java RMI

2!95-702 Distributed Systems 2!

Middleware layers

Applications	

Middleware	

layers	
 Request reply protocol	

External data representation	

Operating System	

RMI, RPC and events	

3!95-702 Distributed Systems 3!

Example: A Dealing Room
System

Dealer’s computer	

Information	

provider	

Dealer	

External	

source	

External	

source	

Information	

provider	

Dealer	

Dealer	

Dealer	

Notification	

Notification	

Notification	

Notification	

Notification	

Notification	

Notification	

Notification	

Dealer’s computer	

Dealer’s computer	
Dealer’s computer	

Notification	
 Notification	

4!95-702 Distributed Systems 4!

Another Example: A
Distributed Whiteboard

•  Suppose a whiteboard server is willing
to make calls to all registered clients
when the drawing is changed by any
one client.

•  Clients may subscribe to this service
(register interest).

•  The whiteboard server publishes the
events that it will make available to
clients.

•  This is a publish-subscribe pattern.

5!95-702 Distributed Systems 5!

Architecture for distributed
event notification

subscriber	
observer	
object of interest	

Event service	

object of interest	

object of interest	
 observer	

subscriber	

subscriber	

3.	

1.	

2.	
 notification	

notification	

notification	

notification	

6!95-702 Distributed Systems 6!

Two Characteristics of
Distributed Event Based

Systems
(1)  Heterogeneous
 -- event generators publish the types of
 events they offer
 -- other objects subscribe and provide
 callable methods
 -- components that were not designed
 to work together may interoperate

7!95-702 Distributed Systems 7!

Two Characteristics of
Distributed Event Based

Systems
(2) Asynchronous
 -- Publishers and subscribers are
 decoupled in space.
 -- notifications of events are sent
 asynchronously to all
 subscribers.

8!95-702 Distributed Systems

Goals/Principles Of Java
RMI

• Distributed Java
• Almost the same syntax and

semantics used by non-distributed
applications

• Allow code that defines behavior
and code that implements behavior
to remain separate and to run on
separate JVMs

• The transport layer is TCP/IP

9!95-702 Distributed Systems

Goals/Principles Of Java
RMI

•  On top of TCP/IP, RMI originally used a
protocol called Java Remote Method Protocol
(JRMP). JRMP is proprietary.

•  For increased interoperability RMI now uses
the Internet Inter-ORB Protocol (IIOP). This
protocol is language neutral and runs on TCP/
IP providing a standard way to make method
calls to remote objects.

10!

Interface Definition Language
 • Definition: An interface definition

language (IDL) provides a notation
for defining interfaces in which each
of the parameters of a method may
be described as for input or output in
addition to having its type specified.

• These may be used to allow objects
written in different languages to
invoke one another.

•  In Java RMI, we use a Java interface.
95-702 Distributed Systems

11!95-702 Distributed Systems

Traditional Object Model

•  Each object is a set of data and a set of methods.
•  Object references are assigned to variables.
•  Interfaces define an object’s methods.
•  Actions are initiated by invoking methods.
•  Exceptions may be thrown for unexpected or illegal
 conditions.
•  Garbage collection may be handled by the developer
 (C++) or by the runtime (.NET and Java).

12!95-702 Distributed Systems

Distributed Object Model
•  Having client and server objects in different processes
 enforces encapsulation. You must call a method to
 change its state.
•  Methods may be synchronized to protect against
 conflicting access by multiple clients.
•  Objects are accessed remotely through RMI or
 objects are copied to the local machine (if the object’s
 class is available locally) and used locally.
•  Remote object references are analogous to local ones
 in that:
 1. The invoker uses the remote object reference to
 identify the object and
 2. The remote object reference may be passed as an
 argument to or return value from a local or remote
 method.

13!95-702 Distributed Systems

Remote and Local Method
Invocations

invocation	
 invocation	

remote	

invocation	
remote	

local	

local	

local	

invocation	

invocation	

A	
 B	

C	

D	

E	

F	

14!95-702 Distributed Systems

A Remote Object and its

Remote Interface

interface	

remote	

m1	

m2	

m3	

m4	

m5	

m6	

Data	

implementation	

remote	
object	

{	
 of methods	

15!95-702 Distributed Systems

RMI Design Issues

•  Level of Transparency

 Remote calls should have a syntax
 that is close to local calls.

 But it should probably be clear to the
 programmer that a remote call is being
 made.

16!95-702 Distributed Systems

Generic RMI Modules

object A	
 object B	
skeleton	

Request	
proxy for B	

Reply	

Communication	
Remote 	
 Remote reference	
Communication	

 module	
 module	
reference module	
 module	

for B’s class	

& dispatcher	

remote	
client	
 	
server	

17!95-702 Distributed Systems

A Generic Remote Reference Module

object A	
 object B	
skeleton	

Request	
proxy for B	

Reply	

Communication	
Remote 	
 Remote reference	
Communication	

 module	
 module	
reference module	
 module	

for B’s class	

& dispatcher	

remote	
client	
 	
server	

The remote reference module holds a table that records the correspondence
between local object references in that process and remote object references
(which are system wide).

18!95-702 Distributed Systems

A Generic Communication
Module

object A	
 object B	
skeleton	

Request	
proxy for B	

Reply	

Communication	
Remote 	
 Remote reference	
Communication	

 module	
 module	
reference module	
 module	

for B’s class	

& dispatcher	

remote	
client	
 	
server	

Coordinate to provide a specified invocation semantics. The communication
module selects the dispatcher for the class of the object to be invoked,
passing on the remote object’s local reference.

19!95-702 Distributed Systems

Proxies

object A	
 object B	
skeleton	

Request	
proxy for B	

Reply	

Communication	
Remote 	
 Remote reference	
Communication	

 module	
 module	
reference module	
 module	

for B’s class	

& dispatcher	

remote	
client	
 	
server	

The proxy makes the RMI transparent to the caller. It marshals and unmarshals
parameters. There is one proxy for each remote object. Proxies hold the remote
object reference.

20!95-702 Distributed Systems

Generic Dispatchers and Skeletons (1)

object A	
 object B	
skeleton	

Request	
proxy for B	

Reply	

Communication	
Remote 	
 Remote reference	
Communication	

 module	
 module	
reference module	
 module	

for B’s class	

& dispatcher	

remote	
client	
 	
server	

The server has one dispatcher and skeleton for each class representing a
remote object. A request message with a methodID is passed from the
communication module. The dispatcher calls the method in the skeleton
passing the request message. The skeleton implements the remote object’s
interface in much the same way that a proxy does. The remote reference
module may be asked for the local location associated with the remote reference.

21!95-702 Distributed Systems

Generic Dispatchers and Skeletons (2)

object A	
 object B	
skeleton	

Request	
proxy for B	

Reply	

Communication	
Remote 	
 Remote reference	
Communication	

 module	
 module	
reference module	
 module	

for B’s class	

& dispatcher	

remote	
client	
 	
server	

The communication module selects the dispatcher based upon the remote object
reference. The dispatcher selects the method to call in the skeleton. The skeleton
unmarshalls parameters and calls the method in the remote object.

22!95-702 Distributed Systems

Binders

object A	
 object B	
skeleton	

Request	
proxy for B	

Reply	

Communication	
Remote 	
 Remote reference	
Communication	

 module	
 module	
reference module	
 module	

for B’s class	

& dispatcher	

remote	
client	
 	
server	

Java uses the
rmiregistry

CORBA uses the
CORBA Naming Service

Binders allow an object to be named and registered.

23!95-702 Distributed Systems

Java RMI
•  A naming or directory service is run on

a well-known host and port number.
•  Usually a DNS name is used instead of

an IP address.
•  RMI itself includes a simple service

called the RMI Registry. The RMI
Registry runs on each machine that
hosts remote service objects and
accepts queries for services, by default
on port 1099.

24!95-702 Distributed Systems

Java RMI
•  On the client side, the RMI Registry is

accessed through the static class
Naming. It provides the method
lookup() that a client uses to query a
registry.

•  The registry is not the only source of
remote object references. A remote
method may return a remote reference.

•  The registry returns references when
given a registered name. It may also

 return stubs to the client. You don’t see
the stubs in recent editions of Java.

25!95-702 Distributed Systems

Client
Virtual Machine

Server
Virtual Machine

method calls with
parameters
return values and
exceptions

The roles of client and server only apply to a single method call.
It is entirely possible for the roles to be reversed.

Java RMI

26!95-702 Distributed Systems

Serving a remote
object

Example: Asynchronous Chat (1)
rmiregistry

WriterClient.java

ReaderClient.java

Serving a remote
object

rebind
lookup

The registry is only used on start up.
The server names the remote object
and each type of client does a single
lookup.

27!95-702 Distributed Systems

Serving a remote
object

Example: Asynchronous Chat (2)
rmiregistry

WriterClient.java

ReaderClient.java

Serving a remote
object

comments

register

comments

The ReaderClient calls the
register method on the server
side remote object. It passes
a remote object reference.

28!95-702 Distributed Systems

The Proxy Design Pattern

Service Proxy Service Implementation

Client

Service Proxy(stub) Service Implementation

Service Interface

29!95-702 Distributed Systems

Simple Java RMI Example
1 - A Client

import java.rmi.*;

public class ProductClient {

 public static void main(String args[]) {

 System.setSecurityManager(new RMISecurityManager());

 String url = "rmi://localhost/";

30!95-702 Distributed Systems

try { // get remote references
 Product c1 = (Product)Naming.lookup(url + "toaster");
 Product c2 = (Product)Naming.lookup(url + "microwave");
 // make calls on local stubs
 // get two String objects from server
 System.out.println(c1.getDescription());
 System.out.println(c2.getDescription());
 }
 catch(Exception e) {

 System.out.println("Error " + e);

 }
 System.exit(0);
 }
}

31!95-702 Distributed Systems

Notes about the client(1)

•  The default behavior when running a Java application is that
 no security manager is installed. A Java application can read
 and write files, open sockets, start print jobs and so on.

•  Applets, on the other hand, immediately install a security
 manager that is quite restrictive.

•  A security manager may be installed with a call to the static
 setSecurityManager method in the System class.

32!95-702 Distributed Systems

Notes about the client(2)
•  Any time you load code from another source (as this client
 might be doing by dynamically downloading the stub
 class), you need a security manager.

•  By default, the RMISecurityManager restricts all code in the
 program from establishing network connections. But, this
 program needs network connections.

 -- to reach the RMI registry
 -- to contact the server objects

•  So, Java requires that we inform the security manager
 through a policy file.

33!95-702 Distributed Systems

Notes about the client(3)
•  The Naming class provides methods for storing and
 obtaining references to remote objects in the remote
 object registry.
•  Callers on a remote (or local) host can lookup the
 remote object by name, obtain its reference, and then
 invoke remote methods on the
 object.
•  lookup is a static method of the Naming class that
 returns a reference to an object that implements the
 remote interface. Its single parameter contains a URL
 and the name of the object.

34!95-702 Distributed Systems

Notes about the client(4)
The object references c1 and c2 do not actually refer to objects on the
server. Instead, these references refer to a stub class that must exist
on the client.

Product c1 = (Product)Naming.lookup(url + "toaster");
Product c2 = (Product)Naming.lookup(url + "microwave");

The stub class is in charge of object serialization and transmission.
it’s the stub object that actually gets called by the client with the
line

System.out.println(c1.getDescription());

35!95-702 Distributed Systems

File client.policy

grant
{ permission java.net.SocketPermission
 "*:1024-65535", "connect";
};

This policy file allows an application to make any network
connection to a port with port number at least 1024. (The RMI
port is 1099 by default, and the server objects also use ports
>= 1024.)

36!95-702 Distributed Systems

Notes About the client(5)

When running the client, we must set a system property
that describes where we have stored the policy.

 javac ProductClient.java
 java –Djava.security.policy=client.policy ProductClient

37!95-702 Distributed Systems

Files on the Server
Product.java

// Product.java

import java.rmi.*;

public interface Product extends Remote {

 String getDescription() throws RemoteException;

}

38!95-702 Distributed Systems

Notes on Product Interface
•  This interface must reside on both the client
 and the server. RMI is not about compilation

against remote objects.
•  All interfaces for remote objects must extend

remote.
•  Each method requires the caller to handle a

RemoteException (if any network problems
occur).

39!95-702 Distributed Systems

Files on the Server
ProductImpl.java

// ProductImpl.java
import java.rmi.*;
import java.rmi.server.*;

public class ProductImpl extends UnicastRemoteObject
 implements Product {
 private String name;

 public ProductImpl(String n) throws RemoteException {
 name = n;
 }
 public String getDescription() throws RemoteException {
 return "I am a " + name + ". Buy me!";
 }
}

40!95-702 Distributed Systems

Notes on ProductImpl.java
•  This file resides on the server.

•  It is used to automatically generate the stub class that is required
 by the client. In order to create such a stub class we can use the
 rmic program on the server:

 javac ProductImpl.java
 rmic –v1.2 ProductImpl

•  This creates the file ProductImpl_Stub.class (skeleton classes
 are no longer needed in JDK1.2)

41!95-702 Distributed Systems

Files on the server
ProductServer.java

// ProductServer.java
import java.rmi.*;
import java.rmi.server.*;

public class ProductServer {

 public static void main(String args[]) {

 try {
 System.out.println("Constructing server implementations...");
 ProductImpl p1 = new ProductImpl("Blackwell Toaster");
 ProductImpl p2 = new ProductImpl("ZapXpress Microwave");

42!95-702 Distributed Systems

System.out.println("Binding server implementations to registry...");

Naming.rebind("toaster", p1);

Naming.rebind("microwave",p2);

System.out.println("Waiting for invocations from clients...");

}
 catch(Exception e) {

 System.out.println("Error: " + e);
 }
 }
}

43!95-702 Distributed Systems

Notes on the
ProductServer.java

•  The server program registers objects with the bootstrap
 registry service, and the client retrieves stubs to those objects.

•  You register a server object by giving the bootstrap registry
 service a reference to the object and a unique name.

 ProductImpl p1 = new ProductImpl(“Blackwell Toaster”);
 Naming.rebind("toaster", p1);

44!95-702 Distributed Systems

Summary of Activities

1.  Compile the java files:
 javac *.java
2.  Run rmic on the ProductImpl.class producing the file
 ProductImpl_Stub.class

 rmic –v1.2 ProductImpl
3.  Start the RMI registry

 start rmiregistry
4.  Start the server
 start java ProductServer
5.  Run the client
 java –Djava.security.policy=client.policy ProductClient

45!95-702 Distributed Systems

Parameter Passing in
Remote Methods

When a remote object is passed from the server, the
client receives a stub (or already has one locally):

 Product c1 = (Product)Naming.lookup(url + "toaster");

Using the stub, it can manipulate the server object by
invoking remote methods. The object, however, remains
on the server.

46!95-702 Distributed Systems

Parameter Passing in
Remote Methods

It is also possible to pass and return any objects via a
remote method call, not just those that implement the
remote interface.

The method call

 c1.getDescription()

returned a full blown String object to the client. This then
became the client’s String object. It has been copied via
java serialization.

47!95-702 Distributed Systems

Parameter Passing in
Remote Methods

This differs from local method calls where we pass and
return references to objects.

To summarize, remote objects are passed across the network
as stubs (remote references). Nonremote objects are copied.

Whenever code calls a remote method, the stub makes a
package that contains copies of all parameter values and
sends it to the server, using the object serialization mechanism
to marshall the parameters.

48!95-702 Distributed Systems

Java RMI Example 2 - RMI
Whiteboard

•  See Coulouris Text
•  Client and Server code stored in

separate directories
•  Stub code available to client and

server (in their classpaths) and so no
need for RMISecurity Manager

•  All classes and interfaces available to
both sides

49!95-702 Distributed Systems

Client Directory
GraphicalObject.class
GraphicalObject.java
Shape.class
Shape.java
ShapeList.class
ShapeList.java
ShapeListClient.class
ShapeListClient.java
ShapeListServant_Stub.class
ShapeServant_Stub.class

Client side steps
The stub classes were
created on the server side
and copied to the client
javac *.java
java ShapeListClient

50!95-702 Distributed Systems

Server Directory
GraphicalObject.class
GraphicalObject.java
Shape.class
Shape.java
ShapeList.class
ShapeList.java
ShapeListServant.class
ShapeListServant.java
ShapeListServant_
Stub.class
ShapeListServer.class
ShapeListServer.java
ShapeServant.class
ShapeServant.java
ShapeServant_Stub.class

Server side steps
javac *.java
rmic –V1.2 ShapeServant
rmic –V1.2 ShapeListServant
copy stubs to client
start rmiregistry
java ShapeListServer

51!95-702 Distributed Systems

GraphicalObject.java
// GraphicalObject.java
// Holds information on a Graphical shape

import java.awt.Rectangle;
import java.awt.Color;
import java.io.Serializable;

public class GraphicalObject implements Serializable{

 public String type;
 public Rectangle enclosing;
 public Color line;
 public Color fill;
 public boolean isFilled;

52!95-702 Distributed Systems

// constructors
 public GraphicalObject() { }

 public GraphicalObject(String aType, Rectangle anEnclosing,

Color aLine,Color aFill, boolean anIsFilled) {
 type = aType;
 enclosing = anEnclosing;
 line = aLine;
 fill = aFill;
 isFilled = anIsFilled;

 }

 public void print(){

 System.out.print(type);
 System.out.print(enclosing.x + " , " + enclosing.y + " , "
+ enclosing.width + " , " + enclosing.height);
 if(isFilled) System.out.println("- filled");else
System.out.println("not filled");
 }

}

53!95-702 Distributed Systems

Shape.java
// Shape.java
// Interface for a Shape

import java.rmi.*;
import java.util.Vector;

public interface Shape extends Remote {

 int getVersion() throws RemoteException;

 GraphicalObject getAllState() throws RemoteException;

}

54!95-702 Distributed Systems

ShapeServant.java
// ShapeServant.java
// Remote object that wraps a Shape

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class ShapeServant extends UnicastRemoteObject implements

Shape {

 int myVersion;
 GraphicalObject theG;

 public ShapeServant(GraphicalObject g, int version)throws

RemoteException{
 theG = g;
 myVersion = version;
 }

55!95-702 Distributed Systems

public int getVersion() throws RemoteException {
 return myVersion;

 }

 public GraphicalObject getAllState() throws RemoteException{
 return theG;
 }
}

56!95-702 Distributed Systems

// ShapeList.java
// Interface for a list of Shapes

import java.rmi.*;
import java.util.Vector;

public interface ShapeList extends Remote {

 Shape newShape(GraphicalObject g) throws RemoteException;
 Vector allShapes()throws RemoteException;
 int getVersion() throws RemoteException;
}

ShapeList.java

57!95-702 Distributed Systems

ShapeListServant.java

// ShapeList.java
// Remote Object that implements ShapeList

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import java.util.Vector;

public class ShapeListServant extends UnicastRemoteObject
 implements ShapeList{

58!95-702 Distributed Systems

 private Vector theList;
 private int version;

 public ShapeListServant()throws RemoteException{
 theList = new Vector();
 version = 0;
 }

 public Shape newShape(GraphicalObject g) throws
 RemoteException{
 version++;
 Shape s = new ShapeServant(g, version);
 theList.addElement(s);
 return s;
 }

59!95-702 Distributed Systems

 public Vector allShapes() throws RemoteException{
 return theList;
 }

 public int getVersion() throws RemoteException{
 return version;
 }
}

60!95-702 Distributed Systems

ShapeListServer.java
// ShapeListServer.java
// Server to install remote objects

// Assume all stubs available to client and server
// so no need to create a
// RMISecurityManager with java.security.policy

import java.rmi.*;

public class ShapeListServer {

 public static void main(String args[]){

 System.out.println("Main OK");

61!95-702 Distributed Systems

try{
 ShapeList aShapelist = new ShapeListServant();

 System.out.println("Created shape list object");
 System.out.println("Placing in registry");

 Naming.rebind("ShapeList", aShapelist);

 System.out.println("ShapeList server ready");

 }catch(Exception e) {
 System.out.println("ShapeList server main " +
 e.getMessage());
 }
 }
}

62!95-702 Distributed Systems

ShapeListClient.java

// ShapeListClient.java
// Client - Gets a list of remote shapes or adds a shape
// to the remote list

import java.rmi.*;
import java.rmi.server.*;
import java.util.Vector;
import java.awt.Rectangle;
import java.awt.Color;

public class ShapeListClient{

63!95-702 Distributed Systems

public static void main(String args[]){

 String option = "Read";

 String shapeType = "Rectangle";

 // read or write

 if(args.length > 0) option = args[0];

 // specify Circle, Line etc
 if(args.length > 1) shapeType = args[1];

 System.out.println("option = " + option +
 "shape = " + shapeType);
 ShapeList aShapeList = null;

64!95-702 Distributed Systems

try{
 aShapeList = (ShapeList)
 Naming.lookup("//localhost/ShapeList");

 System.out.println("Found server");

65!95-702 Distributed Systems

Vector sList = aShapeList.allShapes();
 System.out.println("Got vector");
 if(option.equals("Read")){

 for(int i=0; i<sList.size(); i++){
 GraphicalObject g =
 ((Shape)sList.elementAt(i)).getAllState();
 g.print();
 }
 }
 else { // write to server
 GraphicalObject g = new
 GraphicalObject(
 shapeType, new Rectangle(50,50,300,400),
 Color.red,Color.blue, false);
 System.out.println("Created graphical object");
 aShapeList.newShape(g);
 System.out.println("Stored shape");
 }

66!95-702 Distributed Systems

}catch(RemoteException e) {

 System.out.println("allShapes: " + e.getMessage());

 }catch(Exception e) {

 System.out.println("Lookup: " + e.getMessage());}
 }
}

