
95-702 Distributed Systems
1Master of Information System

Management

95-702 Distributed Systems

Lecture 14: Some Important
Cryptographic Protocols

95-702 Distributed Systems
2Master of Information System

Management

This Week’s Topics

•  Secure Voting
•  Cryptographic notation
•  Four Scenarios from Colouris
•  Needham Schroeder
•  Kerberos
•  SSL
•  Using SSL Sockets

95-702 Distributed Systems
95-702 Distributed Systems 3

Goals Of Secure Voting

•  Only Authorized Voters Can Vote
•  No one can vote more than once
•  No one can determine for whom anyone

else voted
•  No one can duplicate anyone else’s vote
•  No one can change anyone else’s vote

without being discovered
•  Every voter can make sure that his vote

has been taken into account in the final
tabulation.

95-702 Distributed Systems
95-702 Distributed Systems 4

First Attempt

•  Each voter encrypts his vote with the
public key of a Central Tabulating
Facility (CTF)

•  Each voter send his vote in to the CTF
•  The CTF decrypts the votes, tabulates

them, and makes the results public
•  What are some problems with this

protocol?

95-702 Distributed Systems
95-702 Distributed Systems 5

Second Attempt

•  Each voter signs his vote with his
private key

•  Each voter encrypts his signed vote
with the CTF’s public key

•  Each voter send his vote to the CTF
•  The CTF decrypts the votes, checks the

signature, tabulates the votes and
makes the results public

•  What are some problems with this
protocol?

95-702 Distributed Systems
6Master of Information System

Management

Cast of Characters

Alice First participant
Bob Second participant
Carol Participant in three- and four-party protocols
Dave Participant in four-party protocols
Eve Eavesdropper
Mallory Malicious attacker
Sara A server

95-702 Distributed Systems
7Master of Information System

Management

Cryptography Notation

KA Alice’s key that she keeps secret.
KB Bob’s key that he keeps secret.
KAB Secret key shared between Alice and Bob
KApriv Alice’s private key (known only to Alice in asymmetric key crypto)
KApub Alice’s public key (published by Alice for all to read)
{M}K Message M encrypted with key K
[M]K Message M signed with key K

95-702 Distributed Systems
8Master of Information System

Management

Categories of Encryption
Algorithms

Symmetric key encryption. Also called secret key crypto.

 Alice sends {M}Kab and Bob can read it.
 Bob knows Kab.

Asymmetric key encryption. Also called public key crypto.

 Alice sends {M}KBpub and Bob can read it.
 Bob knows KBpriv.

Public key encryption is typically 100 to 1000
times slower than secret key encryption.

95-702 Distributed Systems
9Master of Information System

Management

Scenario 1

Goal: Alice and Bob want to exchange messages using a
 shared and secret symmetric key.

Alice and Bob share KAB.
Alice computes E(KAB,Mi) for each message i.
She sends these to Bob.
Bob uses D(KAB, {Mi} KAB) and reads each Mi.
 Problems:
 How do Bob and Alice communicate the key KAB?
 How does Bob know that {Mi} KAB isn’t a replay of an old
 message?

95-702 Distributed Systems
10Master of Information System

Management

Scenario 2
Goal: Authenticate Alice allowing her to access files held by Bob.

Alice asks Sarah for a ticket to talk to Bob.
Sarah knows Alice’s password so she can compute KA.
Sarah send to Alice {{Ticket}KB,KAB}KA. A challenge!
Alice knows her password and is able to compute KA.
Note that the password is never placed on the network.
Alice is able to compute {Ticket}KB and KAB. How?
Alice sends a read request to Bob. She sends
{Ticket}KB,Alice,Read. Another challenge!
Bob uses KB to read the content of the Ticket.
The Ticket is KAB,Alice. Bob and Alice then use this session
key to communicate.

Problems:
 Old tickets may be replayed by Mallory. Suppose she has
 an old session key.
 Does not scale well : Sarah must know KA, KB ….

95-702 Distributed Systems
11Master of Information System

Management
11Master of Information System

Management

Scenario 3
Goal: Non-repudiation. Alice signs a digital message M.

She computes a digest of M, Digest(M).
If the Digest method is a good one, it is very difficult to find another
message M’ so that Digest(M) == Digest(M’).
Alice makes the following available to the intended users:
M,{Digest(M)}KApriv.
Bob obtains the signed document, extracts M and computes
Digest(M).
Bob decrypts {Digest(M)}KApriv using KApub and compares the
result with his calculated Digest(M). If they match, the signature
is valid.

Problems: Suppose Alice releases her private key to the
world. She can now deny that she signed the message.

95-702 Distributed Systems
12Master of Information System

Management

Scenario 4
Bob and Alice wish to establish a shared secret KAB.

Alice uses a key distribution service to get Bob’s public key.
This key comes in a certificate. So, Bob’s public key has been
signed by a trusted third party, Trent.
Alice verifies that Trent signed the public key KBpub.
Alice generates KAB and encrypts it with KBpub.
Bob has many public keys and so Alice sends a key name along
as well.
Alice sends key name, {KAB}KBpub.
Bob uses the key name to select the correct private key and
computes {{KAB}KBpub} KBpriv == KAB.

Problem:
 The man in the middle attack may be used when Alice first
 contacts the key distribution service. Mallory may return his
 own public key (also signed by Trent).

95-702 Distributed Systems
13Master of Information System

Management

Alice’s Bank Account
Certificate

1. Certificate type: Account number
2. Name: Alice
3. Account: 6262626
4. Certifying authority: Bob’s Bank
5. Signature: {Digest(field 2 + field 3)}KBpriv

Quiz: What is being certified? How would you determine if Bob
really signed this certificate?

95-702 Distributed Systems
14Master of Information System

Management

Public-Key Certificate for
Bob’s Bank

1. Certificate type: Public key
2. Name: Bob’s Bank
3. Public key: KBpub
4. Certifying authority: Fred – The Bankers Federation
5. Signature: {Digest(field 2 + field 3)}KFpriv

Quiz: What is being certified? How would you determine if Fred
really signed this public key certificate?

95-702 Distributed Systems
15Master of Information System

Management

Digital Signatures With
Public Keys

{h}Kpri

M

Signing

Verifying

E(Kpri, h)

128 bits

H(M) h

M

hH(doc)

D(Kpub,{h}) {h}Kpri h'

h = h'?

M

signed doc

Quiz: Is there any
attempt at privacy
here?

95-702 Distributed Systems
16Master of Information System

Management

Signatures With a Shared
Secret Key

M

Signing

Verifying

H(M+K) h

h'H(M+K)

h

h = h'?

K

M

signed doc

M

K

95-702 Distributed Systems
17Master of Information System

Management

X509 Certificate Format

Subject Distinguished Name, Public Key
Issuer Distinguished Name, Signature
Period of validity Not BeforeDate, Not AfterDate
Administrativeinformation Version, SerialNumber
Extended Information

95-702 Distributed Systems
18Master of Information System

Management

The Needham–Schroeder Secret-
Key Authentication Protocol

Header Message Notes
1. A->S: A, B, NA A requests S to supply a key for communication

with B.
2. S->A: {NA , B, KAB,

{KAB, A}KB}KA

S returns a message encrypted in A’s secret key,
containing a newly generated key KAB and a
‘ticket’ encrypted in B’s secret key. The nonce NA
demonstrates that the message was sent in response
to the preceding one. A believes that S sent the
message because only S knows A’s secret key.

3. A->B: A sends the ‘ticket’ to B.
4. B->A: B decrypts the ticket and uses the new key KAB to

encrypt another nonce NB.
5. A->B: A demonstrates to B that it was the sender of the

previous message by returning an agreed
transformation of NB.

{KAB, A}KB

{NB}KAB

{NB - 1}KAB

95-702 Distributed Systems
19Master of Information System

Management

System Architecture of
Kerberos

ServerClient
DoOperation

Authentication
database

Login
session setup

Ticket-
granting

 service T

Kerberos Key Distribution Centre

Server
session setup

Authen-
tication

service A
1. Request for

TGS ticket
2. TGS

ticket

3. Request for
server ticket

4. Server ticket
5.Service

request
Request encrypted with session key

Reply encrypted with session key

Service
function

Step B

Step A

Step C

C S

Quiz: Why is
This an example
of single sign
on?

Based on Needham Schroeder

95-702 Distributed Systems
20Master of Information System

Management
20Master of Information System

Management

SSL Overview

•  Developed by Netscape Communications. The IETF standard is
 now called TLS.
•  Authenticates servers (and optionally clients).
•  Performs secret key exchange like Diffie-Hellman.
•  Data is encrypted with the exchanged key.
•  Clients do not need to provide a certificate but may be required
 to do so by the server.
•  Client authentication is typically done in the application layer.
•  Servers must provide a certificate.
•  Normally uses RSA.
•  Data integrity provided by Message Authentication Codes.

95-702 Distributed Systems
21Master of Information System

Management
21Master of Information System

Management

SSL Handshake Protocol

Client Server

ClientHello
ServerHello

Certificate

Certificate Request

ServerHelloDone

Certificate

Certificate Verify

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Establish protocol version, session ID,
cipher suite, compression method,
exchange random values

Optionally send server certificate and
request client certificate

Send client certificate response if
requested

Change cipher suite and finish
handshake

The client will then send an
encrypted session key to
the server. See scenario 4.

95-702 Distributed Systems
22Master of Information System

Management

SSL Protocol Stack

SSL
Handshake
protocol

SSL Change
Cipher Spec

SSL Alert
Protocol

Transport layer (usually TCP)

Network layer (usually IP)

SSL Record Protocol

HTTP Telnet

SSL protocols: Other protocols:

95-702 Distributed Systems
23Master of Information System

Management

TLS Handshake
Configuration Options

Component Description Example
Key exchange
method

the method to be used for
exchange of a session key

RSA with public-key
certificates

Cipher for data
transfer

the block or stream cipher to be
used for data

IDEA

Message digest
function

for creating message
authentication codes (MACs)

SHA

95-702 Distributed Systems
24Master of Information System

Management

“SOAP is going to open up a whole new avenue
 for security vulnerabilities”

 Bruce Schneier, June 2000

SSL will be part of a solution. We’ll see
XMLEncryption and XMLDigitalSignature later.

95-702 Distributed Systems
25Master of Information System

Management

SSL and Web Applications

• Server authentication is the typical
case since clients may be
authenticated at the application
level. E.g. Clients may be
challenged for user names and
passwords.

• Client authentication using
certificates is also an option.

Quiz: If I give you CMU’s public key
certificate does that mean I am CMU?

95-702 Distributed Systems
26Master of Information System

Management

SSL Detail

• Runs on top of TCP/IP
• Uses session key encryption
• Most commonly used to secure

HTTP (HTTPS)
•  Is an extension of sockets
• Begins with a handshake

95-702 Distributed Systems
27Master of Information System

Management

Abbreviated Handshake (1)

1) Client sends to server
 -- SSL versions supported by
 the client
 -- 32 bytes of random data
 -- a made up session ID
 -- a list of supported ciphers
 -- a list of supported
 compression methods

95-702 Distributed Systems
28Master of Information System

Management

Abbreviated Handshake (2)

•  The server responds with
 -- SSL version selected from client’s list
 -- 32 bytes of server generated random data
 -- The session ID
 -- A cipher chosen from the client list
 -- The selected compression method
 -- A signed public key (certificate)
 -- (Perhaps) a request for the client’s
 certificate (if client authentication is
 required)

95-702 Distributed Systems
29Master of Information System

Management

Abbreviated Handshake (3)
•  The client
 -- checks the server’s certificate
 -- sends a client certificate (if required)
 -- sends (RSA encrypted) 48 bytes of
 random data for the construction of a
 session key
 -- if client authentication is required the
 client hashes all of this and signs the
 hash with its private key

95-702 Distributed Systems
30Master of Information System

Management

Abbreviated Handshake (4)

•  The server and client share a session
key

•  All communication is now handled with
 symmetric key encryption
•  Programmers must make very few

changes to their code – just use
InputStreams and OutputStreams
extracted from SSLSockets rather that
regular sockets!

95-702 Distributed Systems
31Master of Information System

Management

Writing a simple SSL
Client

•  All SSL clients must have a truststore

•  If a client is to be verified by the server then the client needs
 a keystore as well as a truststore

•  The truststore
- holds trusted certificates (signed public keys of CA’s)
- is in the same format as a keystore
- is an instance of Java’s KeyStore class
- is used by the client to verify the certificate sent by the
 server
-  may be shared with others

95-702 Distributed Systems
32Master of Information System

Management

Creating a Truststore

(1) Use keytool –genkey to create an RSA key pair

(2) Use keytool –export to generate a self-signed RSA
 certificate (holding no private key)

(3) Use keytool –import to place the certificate into a truststore

95-702 Distributed Systems
33Master of Information System

Management

(1) Use keytool - genkey to create an RSA key
pair

D:\McCarthy\www\95-804\examples\keystoreexamples>
keytool -genkey -alias mjm -keyalg RSA -keystore mjmkeystore

Enter keystore password: sesame

What is your first and last name?
 [Unknown]: Michael McCarthy

What is the name of your organizational unit?
 [Unknown]: Heinz School

What is the name of your organization?
 [Unknown]: CMU

95-702 Distributed Systems
34Master of Information System

Management

What is the name of your City or Locality?
 [Unknown]: Pittsburgh

What is the name of your State or Province?
 [Unknown]: PA

What is the two-letter country code for this unit?
 [Unknown]: US

Is CN=Michael McCarthy, OU=Heinz School, O=CMU,
L=Pittsburgh, ST=PA, C=US correct?
 [no]: yes

Enter key password for <mjm>
 (RETURN if same as keystore password): <RT>

95-702 Distributed Systems
35Master of Information System

Management

D:\McCarthy\www\95-804\examples\keystoreexamples>dir /w
 Volume in drive D has no label.
 Volume Serial Number is 486D-D392

 Directory of D:\McCarthy\www\95-804\examples\keystoreexamples

[.] [..] mjmkeystore

95-702 Distributed Systems
36Master of Information System

Management

(2) Use keytool –export to generate a self-
signed RSA certificate (holding no private key)

D:\McCarthy\www\95-804\examples\keystoreexamples>
keytool -export -alias mjm -keystore mjmkeystore -file mjm.cer
Enter keystore password: sesame
Certificate stored in file <mjm.cer>

D:\McCarthy\www\95-804\examples\keystoreexamples>dir /w
 Volume in drive D has no label.
 Volume Serial Number is 486D-D392

 Directory of D:\McCarthy\www\95-804\examples\keystoreexamples

[.] [..] mjm.cer mjmkeystore

95-702 Distributed Systems
37Master of Information System

Management

(3) Use keytool –import to place the certificate
into a truststore

D:\McCarthy\www\95-804\examples\keystoreexamples>
keytool -import -alias mjm -keystore mjm.truststore -file mjm.cer

Enter keystore password: sesame
Owner:
CN=Michael McCarthy, OU=Heinz School, O=CMU, L=Pittsburgh,
ST=PA, C=US

Issuer:
CN=Michael McCarthy, OU=Heinz School, O=CMU, L=Pittsburgh,
ST=PA, C=US

95-702 Distributed Systems
38Master of Information System

Management

Serial number: 3e60f3ce
Valid from:
Sat Mar 01 12:54:22 EST 2003 until: Fri May 30 13:54:22 EDT 2003
Certificate fingerprints:

MD5:
80:F4:73:23:4C:B4:32:4C:5F:E0:8A:B1:4D:1E:A3:0D

SHA1:
19:06:31:54:72:ED:B8:D5:B3:CF:38:07:66:B5:78:1A:34:16:56:07
Trust this certificate? [no]: yes
Certificate was added to keystore

95-702 Distributed Systems
39Master of Information System

Management

D:\McCarthy\www\95-804\examples\keystoreexamples>dir /w
 Volume in drive D has no label.
 Volume Serial Number is 486D-D392

 Directory of D:\McCarthy\www\95-804\examples\keystoreexamples

[.] [..] mjm.cer mjm.truststore mjmkeystore
 5 File(s) 2,615 bytes

mjmkeystore will be placed in the server’s directory
SSL will send the associated certificate to the client

mjm.truststore will be placed in the client’s directory

95-702 Distributed Systems
40Master of Information System

Management

File Organization

D:\McCarthy\www\95-804\examples\keystoreexamples>tree /f
Directory PATH listing
Volume serial number is 0012FC94 486D:D392
D:.
├───clientcode
│ mjm.truststore
 | Client.java
│
└───servercode
 mjmkeystore
 Server.java

95-702 Distributed Systems
41Master of Information System

Management

Client.java
import java.io.*;
import javax.net.ssl.*;
import java.net.*;
import javax.net.*;

public class Client {

 public static void main(String args[]) {

 int port = 6502;
 try {
 // tell the system who we trust
 System.setProperty("javax.net.ssl.trustStore","mjm.truststore");

95-702 Distributed Systems
42Master of Information System

Management

// get an SSLSocketFactory
SocketFactory sf = SSLSocketFactory.getDefault();

// an SSLSocket "is a" Socket
Socket s = sf.createSocket("localhost",6502);

PrintWriter out = new PrintWriter(s.getOutputStream());
BufferedReader in = new
 BufferedReader(
 new InputStreamReader(
 s.getInputStream()));
out.write("Hello server\n");
out.flush();
String answer = in.readLine();
System.out.println(answer);

95-702 Distributed Systems
43Master of Information System

Management

 out.close();
 in.close();
 }
 catch(Exception e) {
 System.out.println("Exception thrown " + e);
 }
 }
}

95-702 Distributed Systems
44Master of Information System

Management

Server.java
// Server side SSL
import java.io.*;
import java.net.*;
import javax.net.*;
import javax.net.ssl.*;
import java.security.*;

public class Server {

 // hold the name of the keystore containing public and private keys
 static String keyStore = "mjmkeystore";

 // password of the keystore (same as the alias)
 static char keyStorePass[] = "sesame".toCharArray();

95-702 Distributed Systems
45Master of Information System

Management

 public static void main(String args[]) {

 int port = 6502;
 SSLServerSocket server;

 try {
 // get the keystore into memory
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream(keyStore), keyStorePass);

 // initialize the key manager factory with the keystore data
 KeyManagerFactory kmf =
 KeyManagerFactory.getInstance("SunX509");
 kmf.init(ks,keyStorePass);

95-702 Distributed Systems
46Master of Information System

Management

// initialize the SSLContext engine
// may throw NoSuchProvider or NoSuchAlgorithm exception
// TLS - Transport Layer Security most generic

SSLContext sslContext = SSLContext.getInstance("TLS");

// Inititialize context with given KeyManagers, TrustManagers,
// SecureRandom defaults taken if null

sslContext.init(kmf.getKeyManagers(), null, null);

// Get ServerSocketFactory from the context object
ServerSocketFactory ssf = sslContext.getServerSocketFactory();

95-702 Distributed Systems
47Master of Information System

Management

// Now like programming with normal server sockets
ServerSocket serverSocket = ssf.createServerSocket(port);

System.out.println("Accepting secure connections");

Socket client = serverSocket.accept();
System.out.println("Got connection");

BufferedWriter out = new BufferedWriter(
 new OutputStreamWriter(
 client.getOutputStream()));
BufferedReader in = new BufferedReader(
 new InputStreamReader(
 client.getInputStream()));

95-702 Distributed Systems
48Master of Information System

Management

 String msg = in.readLine();
 System.out.println("Got message " + msg);
 out.write("Hello client\n");
 out.flush();
 in.close();
 out.close();

 }
 catch(Exception e) {
 System.out.println("Exception thrown " + e);
 }
 }
}

95-702 Distributed Systems
49Master of Information System

Management

On the server

D:\McCarthy\www\95-804\examples\keystoreexamples\servercode>
java Server
Accepting secure connections
Got connection
Got message Hello server

95-702 Distributed Systems
50Master of Information System

Management

On the client

D:\McCarthy\www\95-804\examples\keystoreexamples\clientcode>
java Client
Hello client

95-702 Distributed Systems
51Master of Information System

Management

What we have so far…

The Client

 Has a list of public keys it trusts
 in the file mjm.truststore

 Has no public/private key pair
 of its own

The Server

 Has no list of trusted
 public keys in a
 truststore

 Has a public/private
 key pair of its own

95-702 Distributed Systems
52Master of Information System

Management

Important resource

Client

Server

Company Issued Public
Key

Server’s signed public Key

SSL Server Authentication

truststore

keystore

Should the client work
with this server? Yes,
if and only if the server’s
public key has been
signed by the
Company Issued
Public Key.

95-702 Distributed Systems
53Master of Information System

Management

For client authentication
we need

(1)  To generate a key pair for the client
(2)  Extract a client certificate from the key pair
(3) Copy the certificate to the server
(4)  Import this certificate into the server's truststore
(5) Have the server code trust the truststore
(6) Have the client code know about its own keys

Quiz: Is there another way?

95-702 Distributed Systems
54Master of Information System

Management

Important resource

Client

Server

Company Issued Public
Key

Server’s signed
public key

Client/Server Authentication

Client’s signed
public key

Company Issued Public
Key Important Resource

truststore

truststore keystore

keystore

95-702 Distributed Systems
55Master of Information System

Management

(1) Generate a key pair
for the client

D:\McCarthy\www\95-804\examples\keystoreexamples3\client>
keytool -genkey -alias mjmclient
-keyalg RSA -keystore mjmclientkeystore

Enter keystore password: sesame
What is your first and last name?
 [Unknown]: Michael J. McCarthy
What is the name of your organizational unit?
 [Unknown]: Heinz School
What is the name of your organization?
 [Unknown]: CMU

95-702 Distributed Systems
56Master of Information System

Management

What is the name of your City or Locality?
 [Unknown]: Pittsburgh
What is the name of your State or Province?
 [Unknown]: PA
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=Michael J. McCarthy, OU=Heinz School,
O=CMU, L=Pittsburgh, ST=PA, C=US correct?
 [no]: yes

Enter key password for <mjmclient>
 (RETURN if same as keystore password):<RT>

Created mjmclientkeystore

95-702 Distributed Systems
57Master of Information System

Management

(2) Extract a client
certificate from the key pair

D:\McCarthy\www\95-804\examples\keystoreexamples3\client>
keytool -export -alias mjmclient -keystore mjmclientkeystore
-file mjmclient.cer

Enter keystore password: sesame
Certificate stored in file <mjmclient.cer>

Created mjmclient.cer

95-702 Distributed Systems
58Master of Information System

Management

(3) Copy the certificate to
the server

D:\McCarthy\www\95-804\examples\keystoreexamples3\server>dir

03/05/03 12:25p 602 mjmclient.cer
03/01/03 12:54p 1,363 mjmkeystore
03/05/03 01:49p 2,670 Server.class
03/05/03 01:48p 2,740 Server.java

95-702 Distributed Systems
59Master of Information System

Management

(4) Import the certificate
into the server's

truststore
D:\McCarthy\www\95-804\examples\keystoreexamples3\server>

keytool -import -alias mjmclient -keystore mjmclient.trustore
-file mjmclient.cer

Enter keystore password: sesame
Owner: CN=Michael J. McCarthy, OU=Heinz School,
O=CMU, L=Pittsburgh, ST=PA, C=US

Issuer: CN=Michael J. McCarthy, OU=Heinz School,
O=CMU, L=Pittsburgh, ST=PA, C=US

95-702 Distributed Systems
60Master of Information System

Management

Serial number: 3e663114
Valid from: Wed Mar 05 12:17:08 EST 2003 until:
Tue Jun 03 13:17:08 EDT 2003

Certificate fingerprints:
MD5: 8F:87:63:CD:0B:BD:FA:E7:21:7C:0C:B0:C2:CC:2C:14
SHA1: 4A:C8:ED:BB:1A:C4:B9:32:A5:37:03:2F:4C:A3:3C:34:A3:33:
9B:C8
Trust this certificate? [no]: yes
Certificate was added to keystore

95-702 Distributed Systems
61Master of Information System

Management

D:\McCarthy\www\95-804\examples\keystoreexamples3\server>dir
 Volume in drive D has no label.
 Volume Serial Number is 486D-D392

 Directory of server

03/05/03 12:25p 602 mjmclient.cer
03/05/03 12:35p 668 mjmclient.trustore
03/01/03 12:54p 1,363 mjmkeystore
03/01/03 10:40p 2,942 Server.class
03/01/03 10:40p 3,798 Server.java
 9 File(s) 18,184 bytes

95-702 Distributed Systems
62Master of Information System

Management

(5) Have the server code
trust the truststore

// Server side SSL
import java.io.*;
import java.net.*;
import javax.net.*;
import javax.net.ssl.*;
import java.security.*;

public class Server {

 // hold the name of the keystore containing public and private keys
 static String keyStore = "mjmkeystore";

 // password of the keystore (same as the alias)
 static char keyStorePass[] = "sesame".toCharArray();

95-702 Distributed Systems
63Master of Information System

Management

 public static void main(String args[]) {

 int port = 6502;
 SSLServerSocket server;

 try {
 // get the keystore into memory
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream(keyStore), keyStorePass);

 // initialize the key manager factory with the keystore data

 KeyManagerFactory kmf =
 KeyManagerFactory.getInstance("SunX509");
 kmf.init(ks,keyStorePass);

95-702 Distributed Systems
64Master of Information System

Management

// tell the system who we trust, we trust the client's certificate
// in mjmclient.truststore

System.setProperty("javax.net.ssl.trustStore",
 "mjmclient.truststore");

 // initialize the SSLContext engine

// may throw NoSuchProvider or NoSuchAlgorithm exception
// TLS - Transport Layer Security most generic

SSLContext sslContext = SSLContext.getInstance("TLS");
// Inititialize context with given KeyManagers, TrustManagers,
// SecureRandom
// defaults taken if null
sslContext.init(kmf.getKeyManagers(), null, null);

95-702 Distributed Systems
65Master of Information System

Management

// Get ServerSocketFactory from the context object
 ServerSocketFactory ssf = sslContext.getServerSocketFactory();

// Now almost like programming with normal server sockets
 ServerSocket serverSocket = ssf.createServerSocket(port);
 ((SSLServerSocket)serverSocket).setNeedClientAuth(true);
 System.out.println("Accepting secure connections");
 Socket client = serverSocket.accept();
 System.out.println("Got connection");
 PrintWriter out = new
 PrintWriter(client.getOutputStream(),true);

 BufferedReader in = new
 BufferedReader(
 new InputStreamReader(
 client.getInputStream()));

95-702 Distributed Systems
66Master of Information System

Management

 String fromClient = in.readLine();
 System.out.println(fromClient);
 out.println("Hello client\n");
 out.flush();
 in.close();
 out.close();
 System.out.println("Data sent");

 }
 catch(Exception e) {
 System.out.println("Exception thrown " + e);
 }
 }
}

95-702 Distributed Systems
67Master of Information System

Management

(6) Have the client code
know about its own keys

import java.net.*;
import java.io.*;
import javax.net.ssl.*;
import javax.security.cert.X509Certificate;
import java.security.KeyStore;

public class Client {

 public static void main(String args[]) {

 int port = 6502;
 // tell the system who we trust
 System.setProperty("javax.net.ssl.trustStore","mjm.truststore");

95-702 Distributed Systems
68Master of Information System

Management

try {
 SSLSocketFactory factory = null;
 try {
 SSLContext ctx;

 KeyManagerFactory kmf;
 KeyStore ks;
 char[] passphrase = "sesame".toCharArray();
 ctx = SSLContext.getInstance("TLS");
 kmf = KeyManagerFactory.getInstance("SunX509");

 ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream("mjmclientkeystore"),
 passphrase);
 kmf.init(ks, passphrase);
 ctx.init(kmf.getKeyManagers(), null, null);
 factory = ctx.getSocketFactory();
 } catch (Exception e) { throw new IOException(e.getMessage()); }

95-702 Distributed Systems
69Master of Information System

Management

SSLSocket s = (SSLSocket)factory.createSocket("localhost", port);
s.startHandshake();
PrintWriter out = new PrintWriter(s.getOutputStream());
BufferedReader in = new BufferedReader(
 new InputStreamReader(
 s.getInputStream()));
out.write("Hello server\n");
out.flush();
String answer = in.readLine();
System.out.println(answer);
out.close();
in.close();
}
catch(Exception e) {
 System.out.println("Exception thrown " + e); }
 }
}

95-702 Distributed Systems
70Master of Information System

Management

Testing

D:…\server>
java Server
Accepting secure connections
Got connection
Hello server
Data sent D:\…\client>java Client

Hello client

95-702 Distributed Systems
71Master of Information System

Management

Testing after deleting the
server’s truststore

D:…\server>java Server
Accepting secure connections
Got connection

Exception thrown javax.net.ssl.SSLHandshakeException:
Couldn't find trusted certificate

D:\…\client>java Client
Exception thrown javax.net.ssl.SSLHandshakeException:
Received fatal alert: certificate_unknown

95-702 Distributed Systems
72Master of Information System

Management

Testing after deleting the
client’s truststore

D:..\server\java Server
Accepting secure connections
Got connection
Exception thrown javax.net.ssl.SSLHandshakeException:
Received fatal alert: certificate_unknown

D:\…\client>java Client
Exception thrown javax.net.ssl.SSLHandshakeException:
Couldn't find trusted certificate

95-702 Distributed Systems
73Master of Information System

Management

Configuring Tomcat for
SSL

The web server needs a certificate so that the client
can identify the server.

The certificate may be signed by a Certificate Authority
or it may be self-signed.

The web server needs a private key as well.

95-702 Distributed Systems
74Master of Information System

Management

D:\McCarthy\www\95-804\examples\SSLAndTomcat>
keytool -genkey -keyalg RSA -alias tomcat -keystore .keystore

Enter keystore password: sesame

What is your first and last name?
 [Unknown]: localhost
What is the name of your organizational unit?
 [Unknown]: Heinz School
What is the name of your organization?
 [Unknown]: CMU
What is the name of your City or Locality?
 [Unknown]: Pgh.
What is the name of your State or Province?
 [Unknown]: PA

Generate public and
private keys for
Tomcat

The keystore file is
called .keystore

95-702 Distributed Systems
75Master of Information System

Management

What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=localhost, OU=Heinz School, O=CMU, L=Pgh.,
ST=PA, C=US correct?
 [no]: yes

Enter key password for <tomcat>
 (RETURN if same as keystore password):<RT>

D:\McCarthy\www\95-804\examples\SSLAndTomcat>

95-702 Distributed Systems
76Master of Information System

Management

Use Admin Tool to tell a
Web Container about SSL
(1)  Startup Tomcat
(2) Run the admin server with http://localhost:8080/admin
(3)  Log in with your user name and password
(4)  Select Service (Java Web Service Developer Pack)
(5)  Select Create New Connector from the drop down list
 in the right pane
(6) In the type field enter HTTPS
(7) In the port field enter 8443
(8) Enter complete path to your .keystore file
(9) Enter keystore password
(10) Select SAVE and then Commit Changes

Tell Tomcat
about .keystore

95-702 Distributed Systems
77Master of Information System

Management

Testing

Shutdown Tomcat.

Visit Tomcat from a browser.

Use https://localhost:8443/

You can also visit your other installed web apps through
https.

95-702 Distributed Systems
78Master of Information System

Management

95-702 Distributed Systems
79Master of Information System

Management

95-702 Distributed Systems
80Master of Information System

Management

