95-702 Distributed Systems
Message Oriented Middleware Project 6

JMS on GlassFish Due: August 3 11:59:59pm

==

This homework has three parts. Part one consists of a short tutorial on writing and running a JMS application using Netbeans and GlassFish. You should not submit part one.

Part two consists of a small JMS exercise involving two receivers that process jobs off a queue, and then put completed jobs on another queue.

Part three builds an enterprise chat client.

You need to submit projects for Part two and three.

Part One Tutorial

=================

GlassFish comes with Sun Message Queue. Sun Message Queue

is a JMS provider. First, using the GlassFish administrative server,

we need to administratively establish a ConnectionFactory and a

Queue. JNDI (the Java Naming and Directory Interface) will be used

to get access to these administrated objects.

Messages coming out of the Queue may be read synchronously with

a receive method call or asynchronously by implementing a message

listener. A message driven bean may also be used to handle incoming,

asynchronous messages.

Set up

======

Establish a connection factory and a queue.

 Run Netbeans

 Choose Services/Servers/Right Click and start GlassFish v3 Domain.

 Right-click again on GlassFish v3 Domain and choose “View Admin Console”

 The default login is “admin”

 The default password is “adminadmin”

 Within the admin console:

 Expand Resources/JMS Resources.

 Select Connection Factories and select New from the menu.

 Enter the Pool Name:jms/myCoolConnectionFactory.

 From the drop down list, select the type javax.jms.ConnectionFactory

 Enter a short description.

 Click OK.

 Under JMS Resources, select Destination Resources.

 Select New from the menu.

 Enter the JNDI Name:jms/myCoolQueue.

 Enter the Physical Destination Name:myCoolQueue.

 From the drop down list, select the type javax.jms.Queue

 Enter a short description.

 Click OK.

 You can now logout of the admin console.

Build an application.

 Construct a web component and a Message driven bean.

 Return to Netbeans and choose Projects.

 Select File/New Project

 Select Java EE and Enterprise Application.

 The project name is MyCoolJEEProject.

 Create an EJB Module and a Web Application Module.

 Click finish.

 Populate the EJB module with a Message Driven Bean.

 From the Project View, Right Click MyCoolJEEProject-ejb.

 Select New Message Driven Bean.

 The EJB Name is MyCoolMDB and the package name is mycoolmdb

 Select the server destination as jms/myCoolQueue.

 Notice that this is the queue that you created earlier.

 Select Finish and you should see a default Message Driven Bean.

 Modify the onMesssage method with the following.

 Note that you will need to add imports for

 javax.jms.TextMessage

 javax.jms.JMSException

 public void onMessage(Message message) {

 try {

 if(message instanceof TextMessage) {

 TextMessage tm = (TextMessage)message;

 System.out.println(tm.getText());

 } else {

 System.out.println("I don't handle messages of this type");

 }

 }

 catch(JMSException e){

 System.out.println("JMS Exception thrown"+e); }

 catch(Throwable e) {

 System.out.println("Throwable thrown"+e); }

 }

 Build a web application that sends messages to the queue.

 In the Project View, expand the MyCoolJEEProject-war.

 Expand Web Pages and double click index.jsp.

 The introduction page will makes calls to a servlet.

 Change the page to read as follows:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Using a message driven bean is fun.</title>

 </head>

 <body>

 <h1>Messages entered travel over HTTP to a servlet.</h1>

 <h1>The servlet writes the message to a queue</h1>

 <h1>The onMessage method of an MDB is called by the queue.</h1>

 <form action="MyCoolServlet">

 <table>

 <tbody>

 <tr>

 <td>Enter a message</td>

 <td>

 <input type="text" name="simpleTextMessage"

 value="Enter text here" /></td>

 </tr>

 </tbody>

 </table>

 <input type="submit" value="Submit text to servlet" />

 </form>

 </body>

</html>

 Create servlet to collect the text from the browser and deliver it to

 the Message Driven Bean.

 In the Project View, select MyCoolJEEProject-war.

 Right click and choose New Servlet.

 The servlet name is MyCoolServlet.

 The package name is mycoolservlet.

 Choose Next through to Finish.

 Replace code in the default servlet with the following:

protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 Context ctx = new InitialContext();

 ConnectionFactory cf = (ConnectionFactory)ctx.lookup("jms/myCoolConnectionFactory");

 Queue q = (Queue)ctx.lookup("jms/myCoolQueue");

 Connection con = cf.createConnection();

 Session session = con.createSession(false, Session.AUTO_ACKNOWLEDGE);

 MessageProducer writer = session.createProducer(q);

 TextMessage msg = session.createTextMessage();

 String val = request.getParameter("simpleTextMessage");

 msg.setText(val);

 writer.send(msg);

 con.close();

 out.println("<HTML><BODY><H1>Wrote "+val + " to queue</H1>");

 out.println("</BODY></HTML>");

 System.out.println("Servlet sent " + val + " to queue");

 }

 catch(Exception e){

 System.out.println("Servlet through exception "+ e);

 } finally {

 out.close();

 }

 }

 From the Project View, right click MyCoolJEEProject and select deploy.

 Run a browser and visit http://localhost:8080/MyCoolJEEProject-war/

Part Two – JMSJobProject

=========================
In this project, you are to create a job processing system. The basic flow of the systems is:

1. The User enters the URL submitJob.jsp

2. The User types in a job number (a text string) and hits submit

3. The form calls the servlet submitServlet.java

4. submitServlet.java writes the TextMessage with the job number onto a JMS queue named jms/jobQueue

5. One of two message-driven beans (jobReceiver1.java and jobReceiver2.java) read the message off the queue. The JVM and JMS decide which jobReceiver runs onMessage and gets each message. Both of these files are identical except for their name and the text string that they append to the job number TextMessage (see the diagram).

6. jobReceiver1 or jobReceiver2 writes the new string to a second JMS queue, jms/doneQueue.

7. At any time, the User can use the servlet retrieveJobs.java to check what jobs have been completed. This servlet reads jms/doneQueue. If there are no jobs completed, it will return “No new jobs have been completed.” Else, if there are jobs on the doneQueue, then it lists what those jobs were (simply returning the string provided by the jobReceivers.

Submission quidelines:

Name the project JMSJobProject

Name files and queues as indicated in the diagram

Post the project to Blackboard with screen shots demonstrating

your testing of it running correctly.

Part Three – JMS Topics

=======================

 In this part we will use JMS Topics rather than JMS Queues.

 Run Netbeans.

 Choose Services/Servers right click and start GlassFish v3 Domain

 View the administration console of GlassFish v3 Domain

 We need to establish a connection factory and a Topic.

 Expand Resources/JMS Resources.

 Select Connection Factories and select New from the menu.

 Enter the Pool Name:jms/myCoolTopicConnectionFactory.

 From the drop down list, select the type

 javax.jms.TopicConnectionFactory

 Enter a short description.

 Be sure that enabled is checked and click OK.

 Under JMS Resources, select Destination Resources.

 Select New from the menu.

 Enter the JNDI Name:jms/myCoolTopic.

 Enter the Physical Destination Name:myCoolTopic.

 From the drop down list, select the type javax.jms.Topic

 Enter a short description.

 Click OK.

Build an application

====================

 Our goal is to write an enterprise application that acts

as a chat client. Each person using the system will run a copy

of the chat client. Each chat client will act as a producer of

messages to a particular topic. Each chat client will also act as

a consumer of messages on a particular topic.

 Close the administrator browser.

 Stop and then start GlassFish (Right click on GlassFish v3 Domain)

 Build a new JEE project. Call this project

 AJMSClientProject. This will be a JEE

 Enterprise Application client. Use the Main

 class provided by the wizard. Select JEE5 and

 GlassFish v3 Domain

 Use the following Main class to implement our chat service.

/*

 This program is from the text: "Java Message Service", Second Edition

 Creating Distributed Enterprise Applications

 By Mark Richards, Richard Monson-Haefel, David A Chappell

 Publisher: O'Reilly Media

 Released:May 2009

 */

package ajmsclientproject;

import java.io.*;

import javax.jms.*;

import javax.naming.*;

public class Main implements javax.jms.MessageListener{

 private TopicSession pubSession;

 private TopicPublisher publisher;

 private TopicConnection connection;

 private String username;

 /* Constructor used to Initialize Chat */

 public Main(String topicFactory, String topicName, String username)

 throws Exception {

// Obtain a JNDI connection using the jndi.properties file

 InitialContext ctx = new InitialContext();

 // Look up a JMS connection factory

 TopicConnectionFactory conFactory =

(TopicConnectionFactory)ctx.lookup(topicFactory);

 // Create a JMS connection

 TopicConnection connection = conFactory.createTopicConnection();

 // Create two JMS session objects

 TopicSession pubSession = connection.createTopicSession(

false, Session.AUTO_ACKNOWLEDGE);

 TopicSession subSession = connection.createTopicSession(

false, Session.AUTO_ACKNOWLEDGE);

 // Look up a JMS topic

 Topic chatTopic = (Topic)ctx.lookup(topicName);

 // Create a JMS publisher and subscriber

 TopicPublisher publisher =

 pubSession.createPublisher(chatTopic);

 TopicSubscriber subscriber =

 subSession.createSubscriber(chatTopic, null, true);

 // Set a JMS message listener

 subscriber.setMessageListener(this);

 // Intialize the Chat application variables

 this.connection = connection;

 this.pubSession = pubSession;

 this.publisher = publisher;

 this.username = username;

 // Start the JMS connection; allows messages to be delivered

 connection.start();

 }

 /* Receive Messages From Topic Subscriber */

 public void onMessage(Message message) {

 try {

 TextMessage textMessage = (TextMessage) message;

 String text = textMessage.getText();

 System.out.println(text);

 } catch (JMSException jmse){ jmse.printStackTrace(); }

 }

 /* Create and Send Message Using Publisher */

 protected void writeMessage(String text) throws JMSException {

 TextMessage message = pubSession.createTextMessage();

 message.setText(username+": "+text);

 publisher.publish(message);

 }

 /* Close the JMS Connection */

 public void close() throws JMSException {

 connection.close();

 }

 /* Run the Chat Client */

 public static void main(String [] args){

 try{

 // topicFactory, topicName , username

 Main chat = new

 Main("jms/myCoolTopicConnectionFactory",

 "jms/myCoolTopic","guest");

 // Read from command line

 BufferedReader commandLine = new

 java.io.BufferedReader(new InputStreamReader(System.in));

 // Loop until the word "exit" is typed

 while(true){

 String s = commandLine.readLine();

 if (s.equalsIgnoreCase("exit")){

 chat.close(); // close down connection

 System.exit(0);// exit program

 } else

 chat.writeMessage(s);

 }

 } catch (Exception e){ e.printStackTrace(); }

 }

}

 Run this client twice and see if you can chat.

Project

===================

 (1) Suppose a retailer runs out of a particular product. Suppose

too that the sales system and the inventory system need to be notified

of the product's out-of-product status.

 Write a JMS client that reads the name of a product from a user

and publishes the name of the product to a JMS Topic. Two subscribers

are listening on the topic. One, the sales system, announces

the product name to sales staff with the message

"Do Not Sell <product name>". The other, the inventory system,

announces the product name to inventory staff with the

message "Buy Some More <product name>".

 The publisher will be in a loop waiting for the human user

to enter product names that are out of stock. The other two JMS

clients will be listening on the JMS Topic and make announcements

when a message arrives from the publisher.

 Name this project JMSInventoryProject. Post the project

to Blackboard with some screen shots showing it run. Be sure

to use good class and variable names.

 In your paper, write no more than two paragraphs

explaining why this approach is less tightly coupled

than the publish subscribe approach you built with Java

RMI.

 The challenge is to have an Android client (using either

a browser or an Android application) announce that we are out

of stock of a particular product. The message will go to the

inventory listener and the sales listener as before. Provide code and screen shots of your testing of it running correctly.

Synopsis of required submissions:

==================================

Submit to Project 6 Code assignment in Blackboard:

1. JMSJobProject code and screenshots
2. JMSInventoryProject code and screenshots

3. Challenge Android client code and screenshots

Submit to Project 6 Paper assignment in Blackboard:

1. Two paragraphs explaining why the approach of using JMS in these projects is less tightly coupled than the publish subscribe approach you built with Java RMI.

The following jobs are complete:

job120 processed by receiver 1

job138 processed by receiver 2

…

OR

No new jobs have been completed.

retrieveJobs.java

(servlet)

TextMessage: job120 processed by receiver 2

TextMessage: job120 processed by receiver 1

jms/doneQueue

TextMessage: job120

jobReceiver2.java

(Message-Driven Bean)

jobReceiver1.java

(Message-Driven Bean)

jms/jobQueue

job120

Submitted job120 to the job queue

submitServlet.java

(servlet)

Type job number in field below and hit submit

JMSJobProject

