95-733 Organizational Communication and Distributed Object Technologies Homework Carnegie Mellon University

95-702 Organizational Communication and Distributed Object

Technologies Homework 4 Due: Monday, April 10, 2006
Lab Topics: Java RMI, .Net RMI and Web Services
Part 0. Installation Issues
C:\Batch

 Adminclient.bat

 java org.apache.axis.client.AdminClient %1

 Wsdl2java.bat

 java org.apache.axis.wsdl.WSDL2Java %1
Be sure to have axis.jar in your %AXISCLASSPATH% and %AXISCLASSPATH% in your classpath.

Part I. Java RMI Exercise
(1)
Chapter 5 of the Coulouris text contains a Java RMI case study. The code implements a distributed white board. Modify the code so that it acts as a distributed chat server. Rather than moving graphical objects about we would like to move simple text.
The execution of one client program follows:

C:>java MyChatClient

client>Hello There

Hello There

<client>This is cool

Hello There

This is cool

<client>I’m talking to myself

 Hello There

 This is cool

 I’m talking to myself

<client>! Explanation mark means quit

C:> There were no other clients running.
Please place all of your classes in one directory so that you will not have to work with the Security Manager. See the course slides for help with working with rmic. Two or more users must be able to use the system to converse.

Place all of your source code in a directory called javarmi. Post a zip file to Blackboard containing this code. Also, post to Blackboard a few DOS screen shots showing two or more clients talking. (20 Points)
Part II. .NET Remoting Exercise

(2)
Write a distributed chat server in C#. Break the client and the server into two separate directories. On the server side there should be a server and a servant class. Copy the servant’s .dll file to the client side. You must be able to run many clients. The system need not be asynchronous. Use the Singleton model for your servant.

Place all of your source code in a directory called dotnetrmi and post it to Blackboard. Also, post to Blackboard a few DOS screen shots showing two or more clients talking. (20 Points)
Part III. Writing and using Web Services

(3) Write a web service client that visits the google web service described at http://www.google.com/apis/. The client program will ask the user for a word or string and then have the google web service perform a spell check. Display a helpful message to the user that contains the google response. Use the code generated by wsdl2java as your client side API. You will only need Google’s WSDL file. Please do not use the pre-built API provided by Google. Paste a DOS screen shot to Blackboard showing your client interacting with a user. Also on Blackboard, include a well documented Java client in a directory called googlewebservice. (10 Points)

(4) This is the same as question three but use C# rather than Java. Write a web service client that visits the google web service described at http://www.google.com/apis/. The client program will ask the user for a word or string and then have the google web service perform a spell check. Display a helpful message to the user that contains the Google response. Use the code generated by .NET’s wsdl.exe command as your client side API. You will only need Google’s WSDL file. Please do not use the pre-built API provided by Google. Paste a DOS screen shot to Blackboard showing your client interacting with a user. Also on Blackboard, include a well documented C# client in a directory called googlewebservice. (10 Points)

(5) Develop a Java web service using Tomcat and Axis. This service will take an airport name and return the airport’s International Civil Aviation Organization (ICAO) number. Use wsdl2java on the WSDL to create a client side API. Write a small client that prompts the user for an airport name and displays the airport’s ICAO number. You may assume that the user is friendly and will only enter valid and meaningful data. Your web service must work with the following airports:

KJFK - New York JFK,

KPITT Pittsburgh,

KLAX - Los Angeles Intl. ,

EIDW - Dublin, Ireland ,

VHHH - Hong Kong Intl. ,

EHAM - Amsterdam

EGLL - London Heathrow ,

YSSY - Sydney Intl. ,

RJTT - Tokyo Intl. ,

HECA – Cairo.

Paste a DOS screen shot to Blackboard showing your client interacting with a user. Include with your submission documented client and server side Java code. You need not submit the generated API. Please copy the client and server side code to Blackboard. Place this code in a directory called AirportNameToICAO. (20 Points)
(6)
Modify the client that you wrote in the previous exercise so that it reads the airport name from the user and displays the sky condition and temperature. This client will demonstrate the composition of web services. First, it will contact your web service (developed in question 4) with the name of the airport and retrieve the ICAO number. Then it will contact the web service described at http://www.innergears.com/WebServices/ForecastByICAO/ForecastByICAO.asmx?WSDL to access the sky conditions and temperature. Use wsdl2java to generate the client side API. Post DOS screen shots to Blackboard showing your client interacting with a user. Include with your submission client and server side Java code. You need not submit the generated API. Include the code in a directory called composition and post it to Blackboard. (20 Points)
Submission Check List

Part I. (20 Points)
1. Java RMI Chat Server source code

2. Java RMI Chat Client source code

3. DOS screen shots of multiple clients chatting

Part II. (20 Points)

1. .NET Chat Server source code

2. .NET Chat Client source code

3. DOS screen shots of multiple clients chatting
Part III. (60 Points)
1. Java client of Google (10 Points)
2. C# client of Google (10 Points)
3. Airport name to ICAO number web service (20 Points)

a. Client and Server source code

b. DOS screen showing user interaction
4. Compostion of web services (20 Points)

a. Client and server source code

b. DOS screen shots showing user interaction

PAGE
1

