95-733 Organizational Communication and Distributed Object Technologies Homework Carnegie Mellon University

95-702 Organizational Communication and Distributed Object

Technologies Homework 5 Due: Thursday Dec. 7, 2006
Lab Topics: Axis Web Services: Request, Session, and Application Scope
Part I. Web Services Request Scope 20 Points
See the course installation instructions for details on installing and testing Axis with Tomcat.

Write a web service using Tomcat and Axis that implements the following two methods:

public BigInteger add(BigInteger x, BigInteger y)

public BigInteger mult(BigInteger x,BigInteger y)
Write a client that reads two BigIntegers from the command line. It will then call the remote method “add” to compute the sum. It will then call the remote method multiply to compute the product. The sum and product will be displayed on the client’s screen.
Edit the ServiceLocator class (created when you compiled the wsdl document) so that it points to port 6510. Run the TCPMonitor utility with the parameters as shown:

java org.apache.axis.utils.tcpmon 6510 localhost 6502
The idea is to have your client visit port 6510 (where TCPMon is listening) and then have TCPMon pass the request onto your web service. Please see the TCPMonitor documentation provided with your Tomcat/Axis installation.

(1) Submit the Java source code of your web service. 5 Points
(2) Submit the Java source code of your client. 5 Points
(3) Submit screenshots showing your client interacting with a user for multiplication and addition. 5 Points
(4) Submit four SOAP documents. There will be two per method and there are two methods. Copy these from the TCPMonitor display and be sure to show the input and output documents associated with some actual calls to your service. 5 Points

Part II. Web Services Session Scope 30 Points
The exercise in Part 1 you used what has come to be called “Request Scope”. There is no need for the arithmetic service to maintain state associated with a client. Tomcat/Axis defaults to request scope. In this part you will use session scope to implement a single register machine.

On the server side, session scope is established with the following line in your web service deployment descriptor (deploy.wsdd) :

<parameter name="scope" value="session"/>

On the client side you will need to execute the following on the locator object:

loc.setMaintainSession(true);

Write a web service using Tomcat and Axis that implements the following two methods:

public void loadAccum(BigInteger x)

public BigInteger readAccum() {

public void add(BigInteger y) {
Write a client that uses the web service to compute the sum 1+2+3…+1000. The partial sums should be displayed as the client runs. That is, the output of the client will be 1, 3, 6 , …, (1+2+3+…1000). Your client must make 1000 calls to the web service.
The idea is to have your web service maintain a single BigInteger that acts as an accumulator. Clients may load a value into it, read a value from it or add to it. (They used to build CPU chips this way but with 8 bit integers.)
(5) Submit the Java source code of your web service. 10 Points
(6) Submit the Java source code of the client. 10 Points
(7) Submit a screenshot showing your client running and displaying the first 20 values computed. 10 Points
Part III. Web Services Application Scope 50 Points
Chapter 5 of the Coulouris text contains a Java RMI case study. The code implements a distributed white board. Modify the code so that it acts as a distributed chat server. Rather than moving graphical objects about we would like to move simple text. Rather than using Java RMI, use Web Services with application scope. Write one client in Java (use wsdl2java to generate the stub code) and one client in C# (use wsdl.exe to generate the C# code.) The Java stub code will be compiled using javac and the C# stub code will be compiled to a .dll file. Use “csc –t:library” when compiling the proxy and “csc –r” when compiling the client.
The execution of one client program follows:

C:>java MyChatClient

client>Hello There

Hello There

<client>This is cool

Hello There

This is cool

<client>I’m talking to myself

 Hello There

 This is cool

 I’m talking to myself

<client>! Explanation mark means quit

C:> There were no other clients running.
(8) Submit your Java client source. 10 Points
(9) Submit your C# client source code. (One of the users prefers .NET to Java) 10 Points

(10) Submit your server source code. 20 Points
(11) Show a few screen shots showing two or more clients talking. 10 Points

PAGE
1

