95-733 Organizational Communication and Distributed Object Technologies Homework Carnegie Mellon University

95-702 Organizational Communication and Distributed Object

Technologies Homework 4 Due: Tuesday November 21 2006
Lab Topics: Java RMI, .Net RMI Remoting

Part I. Java RMI Exercise
(1)
Chapter 5 of the Coulouris text contains a Java RMI case study. The code implements a distributed white board. Modify the code so that it acts as a distributed chat server. Rather than moving graphical objects about we would like to move simple text.
The execution of one client program follows:

C:>java MyChatClient

client>Hello There

Hello There

<client>This is cool

Hello There

This is cool

<client>I’m talking to myself

 Hello There

 This is cool

 I’m talking to myself

<client>! Explanation mark means quit

C:> There were no other clients running.

Divide up your classes into two directories (client and server). You will run rmic on two “.class” files in the server directory (rmic –v1.2 filename). Do note use the “.class” part of a file name when running rmic. See the course slides for tested examples. Two or more users must be able to use the system to converse. The client will get a remote reference from the rmi registry running on the server. Be sure to start the registry from within the server directory. The client will then call the server each time the user hits the return key on the client console window.

The call to the server will pass along the client side comment. The client will then call another method to collect the comments posted by itself and others.

Place all of your source code in a directory called synchronousjavarmi. Post a zip file to Blackboard containing this code. Also, post to Blackboard a few DOS screen shots showing two or more clients talking. (25 Points)
(2) The problem with the solution to question 1 is that the client must wait until the user enters a line of text before contacting the server. It would be far better to allow the server to make calls on the client whenever any user enters a comment.

Write one client program called ReaderClient.java and another called WriterClient.java. WriterClient.java will read from the console (one line at a time) and send each comment to the server. It will not read from the server at all. That is, unlike the solution to question 1 it will not bother to read comments (posted by others) from the server and write them to the console. The reading from the server will be handled by a separate console window controlled by ReaderClient.java.

One approach to writing ReaderClient.java is to have it poll the server repeatedly. Why does this approach not scale?

Another approach is to write the client so that it becomes a server. It will act as a callee rather than a caller. This is a nice example of the classic publish subscribe design pattern. Your solution should be written to permit a variable number of users.

ReaderClient.java will run in a separate console window and wait for calls from the server. These calls from the server to the client will pass to the reader recent comments that have been entered. This client will call the rmi registry to get a remote reference to the CommentList. This client will then need to call a registration method on the server. The registration method will be passed a remote reference to an object that lives on the client and whose class extends UnicastRemoteObject. You do not need an rmi registry running on the client. You do need to run rmic on the client side and copy the resulting stubs to the server directory. Again, we will not use the Security Manager. Instead, we will make the stubs available to both sides.

A working solution will have at least four open DOS screens. One will be for the rmiregistry. The second will be for the CommentListServer. The third will be for user input (WriterClient.java) and the fourth will be for displaying client’s comments (ReaderClient.java). The client stub will be generated from running rmic on the ReaderClient.class file. The command is “rmic –v1.2 ReaderClient” without the “.class”.

Place all of your source code in a directory called asynchronousjavarmi. Post a zip file to Blackboard containing this code. Also, post to Blackboard a few DOS screen shots showing two or more clients talking. (35 Points)
Part II. .NET Remoting Exercise

(3)
Write a distributed chat server in C#. Break the client and the server into two separate directories. On the server side there should be a server and a servant class. Copy the servant’s .dll file to the client side. You must be able to run many clients. The system need not be asynchronous. Use the Singleton model for your servant. The Singleton model is built into .NET Remoting. You do not need to design your own.

Place all of your source code in a directory called dotnetrmi and post it to Blackboard. Also, post to Blackboard a few DOS screen shots showing two or more clients talking. (40 Points)
Submission Check List

Part I. (60 Points)
Synchronous (25 Points)

1. Java RMI Chat Server source code

2. Java RMI Chat Client source code

3. DOS screen shots of multiple clients chatting

Asynchronous (35 Points)

4. Java RMI Chat Server source code

5. Java RMI Chat Client source code

6. DOS screen shots of multiple clients chatting

Part II. (40 Points)

1. .NET Chat Server source code

2. .NET Chat Client source code

3. DOS screen shots of multiple clients chatting

PAGE
1

