95-733 Organizational Communication and Distributed Object Technologies Homework Carnegie Mellon University

95-702 Organizational Communication and Distributed Object

Technologies Homework 5 Due: Thursday December 8, 2005
Lab Topics: Axis Web Services: Request, Session, and Application Scope
Part I. Web Services Request Scope 20 Points
Write a web service using Tomcat and Axis that implements a few arithmetic operations on BigIntegers. Your web service will contain three methods with the following signatures:

public BigInteger add(BigInteger x, BigInteger y)

public BigInteger mult(BigInteger x,BigInteger y)

public BigInteger expoMod(BigInteger x, BigInteger y, BigInteger m)

The expoMod method will be implemented by calling the modPow method in the java.math.BigInteger

Class.

The user interaction will appear as follows:

java MyBigIntegerClient 2 expomod 3 5

Contacting My BigInteger service

Result = 3

java MyBigIntegerClient 5 mult 6

Contacting My BigInteger service

Result = 30
Edit the ServiceLocator class (created when you compiled the wsdl document) so that it points to port 6502. Run the TCPMonitor utility with the parameters as shown:

java org.apache.axis.utils.tcpmon 6502 localhost 8080
TCPMon is describe in the User Manual provided with Axis.

(1) Submit the Java source code of your web service. 5 Points
(2) Submit the Java source code of the client. 5 Points
(3) Submit screenshots showing your client interacting with a user for multiplication, addition and expoMod operations. 5 Points
(4) Submit six SOAP documents. There will be two per method and there are three methods (add, mult, and expomod.) Copy these from the TCPMonitor display and be sure to show the input and output documents associated with some actual calls to your service. 5 Points

Part II. Web Services Session Scope 50 Points
The exercise in Part 1 you used what has come to be called “Request Scope”. There is no need for the arithmetic service to maintain state associated with a client. Tomcat/Axis defaults to request scope. In this part you will use session scope to implement the Diffie-Hellman key exchange protocol.

On the server side, session scope is established with the following line in your web service deployment descriptor:

<parameter name="scope" value="session"/>

On the client side you will need to execute the following on the locator object:

loc.setMaintainSession(true);

The Diffie-Hellman protocol is designed to allow two parties to establish a secret key over an open channel. In other words, when the protocol is complete, both parties will have a shared secret. If an eavesdropper were to watch the exchange of messages she would not be able to easily compute the secret key.

Session scope is not essential here. We could run the protocol using request scope. Session scope would be appropriate if the server had to establish and then maintain secret keys for several concurrent users.
The client will execute the following steps:

// Given the public q = 353 (a prime) and

// the public alpha = 3 (a primitive root of 353)

// generate a random integer r such that 0 <= r < q

// compute outGoingMessage = (alpha ^ r) mod q

// make a remote call to the server

// inCommingMessage = remoteParty.keyExchange(outGoingMessage)

// compute the key K = (inCommingMessage ^ r) mod q
The server will provide the method keyExchange described below:

public static BigInteger doExchange(BigInteger inCommingMessage)

// Given the public q = 353 (a prime) and

// the public alpha = 3 (a primitive root of 353)

 // generate a random number r such that 0 <= r < q

// compute outGoingMessage = (alpha ^ r) mod q

// compute the key K = (inCommingMessage ^ r) mod q

// return outGoingMessage;

The client and the server must display the computed key K and, in a working protocol, these value will be the same.
(5) Submit the Java source code of your web service. 10 Points
(6) Submit the Java source code of the client. 10 Points
(7) Submit a screenshot showing your client running and displaying q, alpha, r, and K. 10 Points
(8) Submit two SOAP documents from TCPMon. These documents must contain the inCommingMessage and outGoingMessage associated with q, alpha, r and K. 10 Points
(9) Submit a screenshot showing the output of your web service after it writes the key K with System.out.println. This key K should be the same as that generated on the client. 10 Points

Part III. Web Services Application Scope 30 Points
Chapter 5 of the Coulouris text contains a Java RMI case study. The code implements a distributed white board. Modify the code so that it acts as a distributed chat server. Rather than moving graphical objects about we would like to move simple text. Rather than using Java RMI, use Web Services and application scope.
The execution of one client program follows:

C:>java MyChatClient

client>Hello There

Hello There

<client>This is cool

Hello There

This is cool

<client>I’m talking to myself

 Hello There

 This is cool

 I’m talking to myself

<client>! Explanation mark means quit

C:> There were no other clients running.
(10) Submit your client source. 10 Points
(11) Submit your server source code. 10 Points
(12) Show a few screen shots showing two or more clients talking. 10 Points

PAGE
3

