95-702 Organizational Communication & Distributed Object Technologies Carnegie Mellon University

Exam 2 April 20 2005 Name ________________________
Part I. 3 Points each.
(1) Consider Figures 1 and 2. Figure 1 is run before Figure 2 and no exceptions are thrown. What is the exact output on the client side?
(2) Figures 1 and 2 make use of UDP/IP. True False

(3) Figures 1 and 2 make use of TCP/IP. True False

(4) The API used in Figures 1 and 2 provides the abstraction of a stream of bytes to which data may be written and from which data may be read. True False
(5) Figures 1 and 2 illustrate reliable message passing. The UDP protocol checks for lost messages, message duplication and ordering. True False
(6) Figures 1 and 2 illustrate asynchronous callbacks. True False

(7) Figures 1 and 2 are using CORBA’s Common Data Representation (CDR). True False
(8) Figure 3 is using UDP/IP. True False

(9) Unlike Microsoft’s Wsdl command, wscompile reads a configuration file that points to the WSDL document. True False

(10) When writing a web service using HTTP over TCP, the web service programmer needs to maintain a history of previous replies. True False
(11) CORBA uses WSDL as its IDL. True False

(12) One of the goals of CORBA is to support client and server programming in different programming languages. True False

(13) Distributed event-based systems allow objects to subscribe to events occurring at remote objects of interest and in turn to receive notifications when such events occur. True False

(14) Middleware is software that provides a programming model above the basic building blocks of message passing. True False

(15) Middleware stub code handles marshalling on the server. True False

(16) Middleware proxy codes handles marshalling on the server. True False

(17) CORBA makes no provision to support callbacks or event notification. True False

(18) A server has one dispatcher and skeleton for each class representing a remote object. True False
(19) CORBA requires that the application programmer write the skeleton code for each remote object class. True False

(20) In the distributed whiteboard system described in chapter 5, the rmiregistry was used initially to get access to the ShapeList object. It was also consulted every time the client programmer needed to get remote access to a Shape object. True False

Part II. 5 Points each
Circle the best choice.

(21) In homework 3, the ServiceRequest class

(a) was extended by the ArithmeticServiceRequest class.

(b) was specific to database service requests.

(c) was responsible for generating HTTP headers.

(d) was only needed on the client side.

(e) was only needed on the server side.

(22) In homework 3 we built a SOAP-like web service that performed large integer arithmetic using XML. The requests and responses were

(a) encoded in CORBA’s CDR.

(b) encoded using Java’s serialization.

(c) encoded using .NET’s serialization.

(d) were XML documents.

(e) directly manipulated by the application level programmer.
(23) In homework 3 we built a SOAP-like web service that performed large integer arithmetic using XML. We did not have to concern ourselves with big-endian and little- endian representations because
(a) Those conversions were handled by TCP.
(b) HTTP was used to transmit text rather than binary data.
(c) Those conversions were handled by IP.
(d) Those conversions were handled by Java serialization.
(e) Our system was written for one language only - Java.
(24) Consider Figures 4,5,6,7 and 8. Suppose that the rmiregistry is started in one window, the ComputeEngine class is run in a second window and then the ComputeClient class is run in a third. Assume everything works and show the exact output on the client side and on the server side?

 java ComputeClient java ComputeEngine

 ================== ==================

(25) The ComputeEngine class in Figure 7 has a method with the following signature:

public Object executeTask(Task t)
(a) The object associated with t will be passed to this method as a remote reference.

(b) The object associated with t will be passed to this method by value.
(c) The executeTask method may only be called by classes in its own JVM.
(d) The value returned by the executeTask method will be returned as a remote reference.
(e) The executeTask method is written for this specific example and could not be easily adapted to other tasks.
(26) The ComputeEngine class in Figure 7 makes the call

Naming.rebind(name,engine);
(a) This call is making us of the CORBA naming service.

(b) This call is making use of DNS.
(c) This call is making use of the file system naming provider.
(d) This call is using LDAP.
(e) This call allows remote objects to access a remote reference by name.
(27) Suppose we run the programs as described in question 24. The execute method found in Figure 5
(a) is executed twice on the server side.

(b) is executed twice on the client side.

(c) is executed once on the client and once on the server.

(d) is executed within the rmiregistry object.

(e) is executed by the .NET runtime.

(28) .NET Remoting has a client activated object. Which of the following is not a characteristic of this type of object?

(a) It is not normally shared by multiple clients.

(b) It is normally associated with one client.

(c) It may contain leasing code that helps with garbage collection.

(d) It is an example of the singleton design pattern

(e) Its lifetime can be influenced by its client.

Figure 1.

import java.net.*;

import java.io.*;

import java.util.*;

public class AnotherUDPServer {

 public static void main(String args[]) {

 DatagramSocket aSocket = null;

 try {

 aSocket = new DatagramSocket(6502);

 byte buffer[] = new byte[1000];

 while(true) {

 DatagramPacket request = new

 DatagramPacket(buffer,buffer.length);

 aSocket.receive(request);

 String s = new

 String(request.getData(),0,request.getLength());

 StringTokenizer st = new StringTokenizer(s);

 String v = st.nextToken();

 int i = new Integer(v).intValue();

 i = i - 1;

 byte answer[] = (i+"").getBytes();

 DatagramPacket reply = new DatagramPacket(answer,

 answer.length,

 request.getAddress(), request.getPort());

 aSocket.send(reply);

 }

 }

 catch(SocketException e) {

 System.out.println("Socket: " + e.getMessage());

 }

 catch(IOException e) {

 System.out.println("IO: " + e.getMessage());

 }

 finally {

 if(aSocket != null) aSocket.close();

 }

 }

}
Figure 2
import java.net.*;

import java.io.*;

public class AnotherUDPClient {

 public static void main(String args[]) {

 int j = 30;

 DatagramSocket aSocket = null;

 try {

 aSocket = new DatagramSocket();

 DatagramPacket reply = null;

 byte m[] = (""+j).getBytes();

 InetAddress aHost =
 InetAddress.getByName("localhost");

 int serverPort = 6502;

 DatagramPacket request = new DatagramPacket(

 m, m.length, aHost,
 serverPort);

 for(int t = 0; t < 3; t++) {

 aSocket.send(request);
 byte buffer[] = new byte[1000];
 reply = new
 DatagramPacket(buffer,buffer.length);

 aSocket.receive(reply);

 System.out.println("Reply:" + new
 String(reply.getData()));

 }

 }

 catch(SocketException e) {

 System.out.println("Socket: " + e.getMessage());

 }

 catch(IOException e) {

 System.out.println("IO: " + e.getMessage());

 }

 finally {

 if(aSocket != null) aSocket.close();

 }

 }

}

Figure 3 Snarf.cs
using System;

using System.IO;

using System.Net;

using System.Text;

class Snarf {

 static void Main(String[] args) {

 WebRequest req = WebRequest.Create(args[0]);

 WebResponse resp = req.GetResponse();

 Stream s = resp.GetResponseStream();

 StreamReader sr = new StreamReader(s,Encoding.ASCII);

 String doc = sr.ReadToEnd();

 Console.WriteLine(doc);

 }

}

Figure 4 Task.java
import java.io.Serializable;

public interface Task extends Serializable {

 Object execute();

}
Figure 5 HardWork.java

import java.math.*;

public class HardWork implements Task {

 public Object execute() {

 BigInteger sum = new BigInteger("0");

 for(int j = 1; j < 3; j++) {

 BigInteger x = new BigInteger(""+j);

 System.out.println("x = " + x);

 sum = sum.add(x);

 }

 return sum;

 }

}
Figure 6 Compute.java

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface Compute extends Remote {

 Object executeTask(Task t) throws RemoteException;

}
Figure 7 ComputeEngine.java

import java.rmi.*;

import java.rmi.server.*;

public class ComputeEngine extends UnicastRemoteObject

 implements Compute {

 public ComputeEngine() throws RemoteException {

 super();

 }

 public Object executeTask(Task t) {

 return t.execute();

 }

 public static void main(String[] args) {

 String name = "//localhost/Compute";

 try {

 Compute engine = new ComputeEngine();

 Naming.rebind(name,engine);

 System.out.println("ComputeEngine bound");

 }

 catch(Exception e) {

 System.out.println("exception thrown");

 e.printStackTrace();

 }

 }

}
Figure 8 ComputeClient.java

import java.rmi.*;

import java.math.*;

public class ComputeClient {

 public static void main(String args[]) {

 try {

 String name = "//localhost/Compute";

 Compute comp = (Compute) Naming.lookup(name);

 HardWork task = new HardWork();
 task.execute();

 BigInteger bi = (BigInteger) (comp.executeTask(task));

 System.out.println("The result is " + bi);
 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

}

PAGE
1

