95-702 Organizational Communication & Distributed Object Technologies Carnegie Mellon University

Exam 1

Monday, February 23, 2004
Rules:

The instructor is traveling and this exam is being proctored by TA’s. Therefore, questions will not be permitted. If you have a complaint or a concern about a question please make note of the issue on the exam. You may use the back of a page to explain yourself. I will look over all complaints about questions and if I am convinced that a question is unfair I will remove it from the exam.
Please only look at your own test. I am asking the TA’s to monitor (but not enforce) this rule. The TA’s are being asked to report on any cheating that they might see. I will be in charge of enforcing this rule.
Use a separate sheet of paper to cover your answers. Turn in ALL pages of the exam (including all figures).
No books, notes, or computers may be used when taking the exam.

The exam is over at 10:50 or 12:20 sharp.
On the multiple choice questions circle the one best answer.

1. Which of the following is not a challenge normally associated with the construction of a distributed system?

a. Heterogeneity of components

b. Openness

c. Processor Speed

d. Security

e. Scalability

2. Failure Transparency is best described as

 a. not permitting any failures to occur

 b. the concealment of faults

 c. the hiding of the location of the failure

 d. the hiding of the failure type.

 e. a failure in the transparency layer of the TCP/IP

 protocol

3. Which of the following illustrates the openness of the World Wide Web?
a. A browser, written in C++, can communicate with a server

 written in Java.
 b. A URL may point to any resource on the web.

 c. The WWW has wide scale availability.

 d. HTML, HTTP and TCP/IP are published standards.
 e. The web is open to eavesdropping.
4. Which of the following is considered a Byzantine failure?

a. A process halts and its halted state is detectable by other processes

b. A message is placed in an outgoing buffer but
is never placed in an incoming buffer.
c. A process begins to execute random steps.
d. The system detects a communications failure.

e. A message is read from an incoming buffer after being read from a communications channel.

5. Suppose process A places a Lamport timestamp of 33 on a message before it is sent. When the message arrives at process B, process B’s local Lamport clock has the value 89. Which of the following activities is carried out by process B?
a. It’s local clock is changed to 34.

b. It’s local clock is changed to 33.

c. It makes a request on process A to update process A’s clock.

d. It increments its own clock to 90.

e. It decrements its own clock to 88.

6. Suppose process A places a Lamport timestamp of 33 on a message before it is sent. When the message arrives at process B, process B’s local Lamport clock has the value 29. Which of the following activities is carried out by process B?

a. It’s local clock is changed to 34.

b. It’s local clock is changed to 32.

c. It makes a request on process A to update process A’s clock.

d. It increments its own clock to 30.

e. It decrements its own clock to 28.

7. Which of the following is in the correct order?

a. Application message, IP header, TCP header, Ethernet Header

b. Application message, Ethernet Header, IP header, TCP Header

c. Application message, TCP header, UDP header, Ethernet Header

d. UDP Message, IP header, TCP header, Ethernet Header

e. Application message, TCP header, IP header, Ethernet Header
8. Which of the following is in the correct order?

a. HTTP Request, IP header, TCP header, Ethernet Header

b. Http Request, Ethernet Header, IP header, TCP Header

c. HTTP Request, TCP header, UDP header, Ethernet Header

d. HTTP Response, IP header, TCP header, Ethernet Header

e. HTTP Response, TCP header, IP header, Ethernet Header

9. In general, routers

a. Examine each application level message

b. Keep messages flowing between networks rather than within networks

c. Keep messages flowing within networks rather than between networks

d. Are small computers connected to each desktop machine
e. Do not adapt to changes in network state
10. Suppose node B in the following graph executes an RIP send operation (see Figure 1) to nodes A and C on links 1 and 2. Fill in the resulting routing tables for nodes A and C. That is, fill in the 6 blanks below.

[image: image1]
A B
 C

To On In To On In To On In

=========== ============ ============

A Loc 0 B Loc 0 C Loc 0

B 1 1 A 1 1 B 2 1
 C 2 1
-- -- -- -- -- --
11. This is a continuation of question 10. Suppose that (after the updates are made from question 10) node B now discovers that the link to node A is broken. Node B sends a message to Node C and tables are updated again. What do the tables of Nodes B and C look like after this update? Fill in these tables in the space provided below.

Node B Node C
B C

To On In To On In

 ============ ==============

12. Which of the following is true of the server in Figure 2?
a. The server will handle multiple requests before terminating.

b. The server sends HTML code back to a visiting browser.

c. The server sends an HTTP response back to a visiting browser.

d. This server sends no data back to a visiting browser.

e. There is no server side output from this program. That is, no data is sent to the console screen when a browser visits.

13. What exactly does the server in Figure 2 do when it is visited by a browser?
14. Consider the servlet in Figure 3. Describe the data that can be accessed from the HttpServletRequest object. Please be specific and provide several examples.
15. Consider again the servlet in Figure 3. It’s clear from the way this servlet is written that

a. HTTP POST requests are not supported

b. HTTP POST requests are handled in the same was as HTTP GET requests.

c. HTTP GET requests are not supported

d. The servlet container is authenticating the browser by requesting a user name and password

e. The servlet container is using SSL.

16. Consider ExamVisitTracker in Figure 4. What is the exact output when this program is executed?
17. Consider Figure 5 (SAXOnExam.java) and Figure 6 (exam.xml). The Java program is a SAX application and the XML file is its input. What is the exact output of this Java program after processing exam.xml?

18. Which of the following statements is true of Figure 6 exam.xml?

a. exam.xml is well-formed

b. exam.xml is valid

c. exam.xml has conforms to its grammar

d. exam.xml is a mixed content document

e. exam.xml is not “singly-rooted”

19. What is the exact output of the program in Figure 9
(ExamScheduleDoc.java) when run with the input from Figure 7 (Schedule.xml)?
20. Briefly describe what is computed by the function countSome()in the

 ExamScheduleDoc.java program in Figure 9. Do not simply show the output as you did in question 19 but describe what the programmer intended to compute. Be very specific.
Figure 1. The Router Information Protocol Routing Algorithm

Fault on n discovered: set cost to inf for each destination using that link and execute a send

Send: Each t seconds or when Tl changes, send Tl on each non-faulty outgoing link.

Receive: Whenever a routing table Tr is received on link n:

for all rows Rr in Tr {

if (Rr.link <> n) {

Rr.cost = Rr.cost + 1;

Rr.link = n;

if (Rr.destination is not in Tl) add Rr to Tl;

else
for all rows Rl in Tl {

if (Rr.destination = Rl.destination and

(Rr.cost < Rl.cost or Rl.link = n)) Rl = Rr;
}

}

}

Figure 2.
// ExamServer.java

import java.net.*;

import java.io.*;

public class ExamServer {

 public static void main(String args[]) throws Exception{

 ServerSocket listener = new ServerSocket(6502);

 Socket server ;

 server = listener.accept();

 BufferedReader in = new BufferedReader(

 new InputStreamReader(

 server.getInputStream()));

 PrintWriter out = new

 PrintWriter(server.getOutputStream(),true);

 System.out.println(in.readLine());

 }

}

Figure 3.
public class CoolServlet extends HttpServlet {
 public void doPost(HttpServletRequest req,

 HttpServletResponse response)

 throws ServletException,

 IOException {

 doGet(req, response);

 }
 public void doGet(HttpServletRequest req,

 HttpServletResponse response)

 throws ServletException,

 IOException

 {

 String newPresident = req.getParameter("president");

 // code deleted :

 // :

 }

}

Figure 4 ExamVisitTracker

import java.util.*;

public class ExamVisitTracker {

 private Map nameDatePairs;

 private static ExamVisitTracker instance = new ExamVisitTracker();

 private ExamVisitTracker() {

 System.out.println("Constructing Exam Visit Tracker");

 nameDatePairs = new HashMap();

 }

 public static ExamVisitTracker getInstance() { return instance; }

 public void addVisit(String userName) {

 System.out.println("Adding " + userName);
 nameDatePairs.put(userName, new Date());

 }

 public Date lastVisit(String name) {

 Date d = (Date)nameDatePairs.get(name);

 return d;

 }

 public static void main(String a[]) {

 ExamVisitTracker vt1 = ExamVisitTracker.getInstance();

 vt1.addVisit("Mike");

 ExamVisitTracker vt2 = ExamVisitTracker.getInstance();

 vt2.addVisit("Sue");

 }

}
Figure 5

// SAXOnExam.java

import java.io.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

import javax.xml.parsers.*;

public class SAXOnExam extends DefaultHandler

{

 public static void main (String argv []) throws Exception

 {

 XMLReader reader = XMLReaderFactory.createXMLReader(

 "org.apache.xerces.parsers.SAXParser");

 InputSource inputSource = new InputSource("exam.xml");

 reader.setContentHandler(new SAXOnExam());

 reader.parse(inputSource);

 System.exit (0);

 }

 public void endDocument() throws SAXException {

 System.out.println("endDocument called:");

 }

 public void startElement(String namespaceURI, String localName,

 String qName, Attributes aMap)

 throws SAXException {

 for(int i = 0; i < aMap.getLength(); i++) {

 String attName = aMap.getLocalName(i);

 String value = aMap.getValue(i);

 System.out.println("name = " + attName +

 " value = " + value);

 }

 }

}
Figure 6 exam.xml

<?xml version="1.0" ?>

<tree>

Takers

<d>At CMU</d>

</tree>
Figure 7 Schedule.xml

<?xml version="1.0" encoding = "utf-8"?>

<!DOCTYPE Schedule SYSTEM "Schedule.dtd">

<Schedule>

 <Monday>

 <openSlot>C</openSlot>

 <openSlot>D</openSlot>

 </Monday>

 <Tuesday>

 <openSlot>A</openSlot>

 <openSlot>D</openSlot>

 </Tuesday>

 <Wednesday>

 <openSlot>B</openSlot>

 <openSlot>C</openSlot>

 </Wednesday>

 <Thursday>

 <openSlot>B</openSlot>

 </Thursday>

 <Friday>

 <openSlot>B</openSlot>

 <openSlot>D</openSlot>

 </Friday>

 <Saturday>

 <openSlot>B</openSlot>

 <openSlot>D</openSlot>

 </Saturday>

 <Sunday>

 </Sunday>

</Schedule>
Figure 8. Schedule.dtd

<!ELEMENT Schedule (Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday)>

<!ELEMENT Monday (openSlot*)>

<!ELEMENT Tuesday (openSlot*)>

<!ELEMENT Wednesday (openSlot*)>

<!ELEMENT Thursday (openSlot*)>

<!ELEMENT Friday (openSlot*)>

<!ELEMENT Saturday (openSlot*)>

<!ELEMENT Sunday (openSlot*)>

<!ELEMENT openSlot (#PCDATA)>
Figure 9. ExamScheduleDoc.java

import java.io.*;

import org.w3c.dom.*;

import javax.xml.parsers.*;

import org.xml.sax.*;

import org.apache.xml.serialize.*;

public class ExamScheduleDoc

{

 private Document dom;

 public ExamScheduleDoc(InputSource is) throws Exception

 {

 DocumentBuilderFactory docBuilderFactory =

 DocumentBuilderFactory.newInstance();

 DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder();

 dom = docBuilder.parse(is);

 }

 public int countSome() throws Exception

 {

int total = 0;

 String days[] = {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday",

 "Saturday", "Sunday"};

 for (int i = 0; i < 7; i++) {

 boolean found = false;

 Node aDay =

 ((NodeList)dom.getElementsByTagName(days[i])).item(0);

 NodeList aList = aDay.getChildNodes();

 // there may be whitespace nodes

 int ctr = aList.getLength();

 int j = 0;

 for(j = 0; j < ctr; j++) {

 Node child = (Node)aList.item(j);

 if(child.getNodeType() == Node.ELEMENT_NODE) found = true;

 }

 if(found) total++;

 }

return total;

 }

 public static void main(String args[]) throws Exception {

InputSource is = new InputSource("Schedule.xml");

ExamScheduleDoc sd = new ExamScheduleDoc(is);

int k = sd.countSome();

 System.out.println("Count some = " + k);

 }

}

2

1

C

B

A

PAGE
6

