Java for Computational Finance

 Due: Nov. 27

Homework 1

 Sending Encrypted Financial Documents Over The Internet

Your task for homework 1 is to write a client program that works with the server provided. Your client program must be executed with the command java Client filename. The file ‘filename’ must be the name of an ASCII or binary file found in the local directory.

Your client will be written so that it is uses RSA encoding to encrypt the specified file and transmit BigInteger objects representing the corresponding cyphertext over the internet. At a later date, you will be provided with a public key and a server name and port. You will be asked to send an encrypted file to that server. At the present time please use the server provided to test your client on your local machine. On Windows, this means that you will have two DOS windows open, one for the client and one for the server.

When reading the input file, break the file into 10 byte blocks. The end of the file may have less than 10 bytes and your client must handle that well. Each 10-byte block must be prepended with the size of the block (this number will usually be 10). We are doing this for two reasons. One, the number of bytes per block will never be negative and so when we convert the block to a java BigInteger the BigInteger will never be negative. In a binary file, such as a Java .class file, the leading byte in a block may have its leftmost bit set which would otherwise cause our BigInteger to go negative. Second, this convention allows us to change the block size easily.

When choosing keys, make sure that your value for n is larger than the maximum integer that you intend to encode. Currently we are using 11 byte integers. (One byte is for the size and 10 are for data.) Be sure to look over the BigInteger API for the routines that you’ll need. The routines that we ran in Homework 0 worked well for small integers but will stall for very large ones. We really must use the efficient algorithms provided with the BigInteger class.

In order to run the server, you will first need to write two of your own classes (KeyGen.java and Decoder.java). In order to run the client, you will need to provide two more of your own classes (Encoder.java and QueueOfBytes.java). All of these classes are documented with Java Doc on the web site.

This is a list of classes that you will need to write:

 KeyGen.java

 Decoder.java

 Encoder.java

 QueueOfBytes.java

 Client.java

On the course web site there is a file called example_1.xml. This an FpML document representing an interest rate swap. This document is from www.fpml.org. You should be able to encrypt this document and send it to your server by entering the command java Client example_1.xml. When the server receives this document it should decrypt it and write it to a file called file1.dat (in the same directory as the server). Test your client and server with binary files as well. We will be testing it using both the financial document and a java “.class” file.

Submission guide:

1. Send the following java files to the grader using www.cmu.edu/blackboard

a. KeyGen.java, Encoder.java, Decoder.java

b. QueueOfBytes.java

c. Client.java

2. In the FpML document, you will notice an XML comment that encloses the DOCTYPE element. Comments in XML begin with <!—and end with (. Add your own comment after the DOCTYPE comment. This comment must include your name and email address as well as your city. Then, using your program Client.java, connect to my server hempel.heinz.cmu.edu port 6502 and send the encrypted FpML document.

 My public key (e,n) pair will be announced soon. Please only send one or two copies of the file. Also, no attempt has been made to establish a secure server so be kind. Thanks! We’ll try to provide feedback about the arrival of your document via email. If something goes wrong with the submission, you’ll get another try at a later date.

