46-935 Java for Computational Finance                                                                                            Fall 2002


Programming Project 2                                        Due: November 21, 2002

Symmetric Key Encryption

In homework 1 we worked with an asymmetric cipher. In that case the encryption key was different than the decryption key. In this homework we will work with two symmetric ciphers. The first will be a “bare bones” approach with a very simple algorithm. The second will involve a sophisticated algorithm called Blowfish. 

My intent is for this lab to be doable. Please start right away and let us know if you are having trouble. 

Part A. Bare Bones Approach 


In this part we will be working with encrypted binary and ASCII files. The encryption scheme used is a simple shift cipher. Suppose we have a byte that contains 01010101 and we would like to encrypt it using an encryption key of 3. We can perform the following in Java:



byte plainText = (byte) 85;                      // we should cast the int to a byte

                             byte cipherText = (byte)(plaintext + 3);  // here we must cast the int to a byte

                             // we can now store and transmit the cipherText

                             // the only person who can decrypt it is someone who knows the secret key = 3

                             // to get the plaintext back we compute

                             plaintext = (byte)(cipherText – 3);


Let’s do that again but with a byte whose leftmost bit is set. Java treats all bytes whose leftmost bit is set as a negative integer in two’s complement notation. However, in this exercise, we can almost always ignore that fact. 



byte plaintext = (byte) 247;     //  place 11110111 into the byte

                             // if you now print plaintext it will display as –9.

                             // plaintext will test as less than 0.

                             // we can retrieve the 247 (into the integer k) with the following

                             // if (plaintext < 0) k = plaintext + 256; 

                             // else k = plaintext;

                             // but let’s encrypt the plaintext

                             byte cipherText = (byte)(plaintext + 3);

                             // we can now store and transmit the cipherText

                             // the only person who can decrypt it is someone who knows the secret key = 3

                             // to get the plaintext back we compute

                             plaintext = (byte)(cipherText – 3);


This all works because the addition and subtraction operations in two’s complement are the same operations as addition and subtraction when working with unsigned quantities. For the most part, we can simply ignore the fact that Java treats these 8 bit bytes as signed.


Note that the encryption works because when we add 1 to 255 we get 0. That is, with the overflow of the leftmost bit we are really using modulo arithmetic. (255 + 1) = 0 mod 256. In the same way we have 9 + 5 = 2 (mod 12). We do this all the time when we work with time. 2 – 5 = 9 (mod 12).


It is helpful to keep in mind that that is the only type of encryption that we are working with in this “bare bones” part. There is one key and it is always added to or subtracted from an 8-bit byte. 

(1) Write a Java program (Frequency.java) that counts the frequency of each 8-bit byte appearing in a file. The file may be local or may exist on the internet. The URL of the file must be entered on the command line. The output will display a table with 16 columns and 16 rows. Each table element will be an ordered pair. The first value will be the value of the byte (0..255) and the second value will be the frequency of that byte in the file. Here are two example executions. The first goes to the internet for the file and the second goes to the local file system for the file.


java Frequency http://dewdney.heinz.cmu.edu:8080/financial/secret.txt

java Frequency file:somefile.txt


Within your Java program, you can create a DataInputStream object as follows.


URL u = new URL(args[0]);


DataInputStream in = new DataInputStream(u.openStream());


Submission Requirements:



Paste a copy of Frequency.java here



Paste a screen shot showing the output of Frequency.java when run against the file 

                             secret.txt. 

                             This screen shot will show the table of byte, frequency pairs.

                              Place a copy of Frequency.java on blackboard.

(2) Write a Java program called Reader.java that reads a text file called plain.dat from dewdney.heinz.cmu.edu:8080/financial/plain.dat.  The program will simply read the file and echo its contents on the client’s screen. The data will appear as text data on the screen (not numbers).

              Submission Requirements:



Paste a copy of Reader.java here.



Paste a screen shot showing Reader.java running and writing plain.dat to the DOS screen.



Place a copy of Reader.java on blackboard.

(3) Write a program called Cryptanalyze.java that reads an encrypted text file called cipher.dat from dewdney.heinz.cmu.edu:8080/financial/cipher.dat. The program must use a brute force search to find the key that the file was encrypted with. The program will echo data to the user using test keys from 0 to 255. The user must be able to halt the program when the program displays English text. (Most of the time it will display gibberish.) At that point the program will display the encryption key. It will be the program’s job to test each key from 0 to 255. It will be the user’s job to view the text and determine if it’s English. You do not want to visit the server 256 times so the cipher.dat file must be stored in a local byte array. The file size will not be greater than 5000 bytes.

              Submission Requirements:



Paste a copy of Cryptanalyze.java here.



Place several screen shots showing the user reading gibberish and one reading English.



Place a copy of Cryptanalyze.java on blackboard.

(4) Run your  Frequency.java program against several .class files. This should allow you to determine the byte with the greatest frequency. Run your Frequency.java program against the file called AnEncrypted.class found on dewdney.heinz.cmu.edu:8080/financial/AnEncrypted.class. From this information you should be able to write a client that reads and decrypts AnEncrypted.class and then writes it to your local file system. Call this client GetAndDecodeBytes.java.


Submission Requirements:


Paste a copy of GetAndDecodeBytes.java here.


Place a copy of GetAndDecodeBytes.java on blackboard.

Part B.  Using Java’s Java Cryptography Architecture (JCA) and Java Cryptography Extension (JCE)

(5)
The program below was used to encrypt a financial document called SecretFinancialDoc.xml. The file is located at dewdney.heinz.cmu.edu:8080/financial/SecretFinancialDoc.xml. Modify the code so that it reads the document from the internet, decrypts it, and writes it to a local file. Name this new program FileDecryptor.java.


Submission Requirements:


Paste a copy of FileDecryptor.java here.

               Paste a copy of the first 10 lines of the decrypted file here.


Place a copy of FileDecryptor.java on blackboard.

// A simple example of symmetric encryption using the Blowfish algorithm

// This program only requires JDK1.4 

// The Blowfish key values were selected with the KeyGenerator class

import java.security.*;

import javax.crypto.*;

import javax.crypto.spec.*;

import java.io.*;

public class FileEncryptor {

    public static void main(String args[]) throws Exception {

       System.out.println("Building a Blowfish key");

       byte byteKey[] = { -78, 76, 26, -79, 61, -85, -71, -40, 71, 27, 111, 91, 5, -117, -105, 19 };

       SecretKeySpec key = new SecretKeySpec(byteKey, "Blowfish"); 

       // Display the raw bytes of the key

       byte[] myKey = key.getEncoded();

       for(int m = 0; m < myKey.length; m++) {

           System.out.print("|" + myKey[m] + "|");

       }

       System.out.println("Encrypting " + args[0] + " to " + args[1]);

       // open two streams

       FileInputStream fis = new FileInputStream(args[0]);

       FileOutputStream fos = new FileOutputStream(args[1]);      

       // get a Blowfish cipher in Electronic Code Book Mode with PKCS#5 padding   

       Cipher cipher = Cipher.getInstance("Blowfish/ECB/PKCS5Padding");

       // set the cipher to encrypt 

       cipher.init(Cipher.ENCRYPT_MODE, key);

       // wrap the FileOutputStream with a CipherOutputStream

       CipherOutputStream cos = new CipherOutputStream(fos, cipher);

       // do the encryption

       int theByte = 0;

       while((theByte = fis.read()) != -1) {

              cos.write(theByte);

       }

       // close the streams

       fis.close();

       cos.close();

   }

}      

Final Submission requirements( Please help the grader):


It is likely that you have written some additional classes that were used in your work above. Please place copies of those additional classes on blackboard and include printouts of each in this document . In some cases the grader will want to test your programs and he will need all the files available on blackboard.


Please post this document on blackboard as well. The grader will go through and check the screen shots and look at the code. If a question arises, he will attempt to download and run your code.

To capture a screen shot, hit Alt+PrtScreen on the window you want to copy. You can paste the screen shot into the Word document with the Edit/Paste menu. To capture the entire screen, use Ctrl+PrtScreen.  

