46-690 Object-Oriented Programming III Homework 3

Due: Wednesday, February 23,2005 CMU/MSCF

Topics: Option pricing using Trinomial Trees, Client Activated Objects and Web Services

In section 18.5 of Hull’s Fifth Edition, trinomial trees are introduced. In this project you will implement a trinomial tree (as described in Hull) and make it available in three different ways
.
(1) 50 Points. Write two methods in C# with the following signatures:

public String getTree()

// postcondition:

// The contents of the trinomial tree array is returned as a
 // string.

// Each tree node (pointed to by each array element) is placed
// into the string as a stock price, option price pair. Each node
// entry in the string is terminated by a “\n”.

// If the tree is empty then this routine returns a string
 // containing the string “Empty Tree”. Otherwise, the most

 // recently computed tree is returned.

public double priceOption(double s0,double sigma,

double k, double r, double t, int n, OptionType type,
 bool earlyExercise)

{

// preconditions:

// s0 = initial value of stock

// sigma = volatility

// k = strike price

// r = risk free rate

// t = time in years until expiration

// n = the number of trinomial steps

// type = Call or Put

// earlyExercise = true iff American

// postconditions:
 // Generates new tree data that is subsequently

 // available by calling the getTree() method.

// Returns the theoretical price of the option as
 // computed with a trinomial tree

Write a console application that tests both methods. Your program will prompt the user for priceOption’s parameters and then compute and display the price of the option. It will also display the contents of the array containing the trinomial tree.

Your program will contain a class called Node. This class will have two properties called “StockPrice” and “OptionPrice” and will override object’s ToString.

Your program will contain a class called TrinomialTree with two instance methods and one static method. One instance method will be named “priceOption” and the other will be named “getTree”. The static method will be named “Main”.

The priceOption method will create a trinomial tree. The trinomial tree will live in a one dimensional array of Nodes. The size of the array will be determined by n (the number of steps.) We can get away with this array implementation because this type of tree is always perfectly balanced. In general, arrays are not the appropriate data structure for trees. In this case, an array implementation is quite called for and is required.

To test your solution you should use Hull’s DerivaGem software. Since you will be using a trinomial tree, your prices may differ a bit from Hull’s. DerivaGem can be found on the disk that comes with Hull’s fifth addition.

An example execution of my solution follows:

Trinomial Tree Calculator

Enter American (A) or European (E)

A

Enter put (P) or Call (C)

P

Enter stock price

100

Enter volatility,Eg. 0.4

.4

Enter strike price

110

Enter risk free rate,Eg. 0.10

.10

Enter time till expiration (years)

.001

Enter number of steps

2
Stock price 100
Volatility 0.4

Strike price 110

Risk free rate 0.1

Time till expiration 0.001

Number of steps 2

Option price = 10

Tree Values

[100,10]

[98.4627449330418,11.5372550669582]

[100,10]

[101.561255546962,8.43874445303796]

[96.9491213974925,13.0508786025075]

[98.4627449330418,11.5372550669582]

[100,10]

[101.561255546962,8.43874445303796]

[103.146886282753,6.85311371724671]

Submission:

 Paste two files to blackboard. There will be one ".cs"

file and a Microsoft Word document containing a screen shot showing your program running. The inputs to this demonstration will be:
Stock price 100

Volatility 0.4

Strike price 130

Risk free rate 0.1

Time till expiration 0.0001

Number of steps 4

(2) 25 Points. Use .NET Remoting to serve a client activated object that allows clients to call the getTree() and priceOption() methods. The initial lifetime of the object will be set to 200 seconds and each visit will renew the lease for 200 additional seconds. Test your remote object by running two clients (in separate DOS windows) simultaneously.
Each client will execute the following algorithm:

Prompt the user and read the maximum number of trinomial steps.

For every step size from 1 to the maximum {
 Double p = call web service to get price

 String t = call web service to get tree

 Display the price p and the tree t

}

Please select reasonable option parameters (interest rate, strike price and so on.) The client will make repeated calls on the service with these same values. The only parameter that will change will be the number of steps requested of the service (from 1 to the maximum as entered at run time.)

Submission:

Post four files to blackboard. There will be three C# files and one Microsoft Word document. The first file will be a copy of the client. The second will contain the trinomial tree calculator class and the third will be a server that puts the calculator into service. The Word document will contain a screen shot showing two clients running in two different DOS screens. Use CTRL-PrtSc to copy the entire screen to the clipboard.
(3) 25 Points. This is exactly the same problem as in question 2 but makes use of an interoperable web service. The TrinomialTree web service will make two methods available to users. The first, priceOption, will return a price but will also write the generated tree array to a session object. The second, getTree, will read the tree from the session object before returning it to the client. The use of a session object allows us to keep track of state between calls. As discussed in class, the client code will have to enable cookies.

Submission:

Post four files to blackboard. There will be one .asmx file that contains a pointer to the TrinomialTree.cs file. There will be two C# files. The first C# file will be a copy of the client. The client will need to create a System.Net.CookieContainer object. It will execute the same algorithm described for the client in question 2. The second C# file will contain the trinomial tree calculator class. The last file, a Word document, will contain a screen shot showing two clients running in two different DOS screens. Use CTRL-PrtSc to copy the entire screen to the clipboard.
� Advanced students may replace the trinomial tree with a trinomial tree with an adaptive mesh. See Hull for details. I have not yet written such a tree. If it does not work out you will be on your own. All other parts of the assignment remain the same.

PAGE
2

